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Appendix A Summary Statistics

Table A.1 reports the basic summary statistics for the NBER-CES manufacturing database. The production
workers, non-production workers, and production worker hours are separately available in the dataset, but
we use total employment as a labor input for simplicity. Allowing the production worker and non-production
worker separately or using production worker hours yields similar estimation results. The data cover 473
6-digit NAICS manufacturing industries from 1958 to 2009. The quantity indexes of four inputs are
measured with the energy (energy/pien), material excluding energy ((matcost/pimat) - (energy/pien), since
the units in the values and prices of material and energy are identical), labor (emp), and capital (cap).
The energy share is measured as the share of the value of the shipment (energy/vship). We use the input
prices for the instrumental variables, and they are the energy price deflator (pien), material price deflator
(pimat), worker wage (pay/emp), and investment deflator (piinv). Note that we do not construct the price
indexes separately for the material excluding the energy input, as it is not given in the original dataset and
requires more subtraction and addition, which could exacerbate the measurement errors in such variables.
Table A.3 reports the first-stage regression results for the instrumental variables used in this paper.

Similarly, Table A.2 reports the summary statistics for the KLEMS database. The database covers 60
sectors corresponding to one or multiple 3-digit NAICS codes from 1987 to 2012. It includes key inputs
available in the NBER-CES database, such as energy, labor, capital, and material inputs, as well as its
price indexes. This database is available on the Bureau of Economic Analysis (BEA) website and is used
by influential papers, such as Bils et al. (2018). Although the data cover aggregate sectors over a short
period relative to the NBER-CES database, to the best of our knowledge, it is the only industry-level
panel data that have all the relevant information for our estimation technique and cover the entire US
economy. The quantity indexes of four inputs are measured with energy (renergy), material (rmat), worker
(rlabor), and capital (rcap). There is one observation that has a negative value for the nominal labor, and
we drop it for our analyses. The energy share is measured as the share of the total nominal output minus
nominal service input (nenergy/(noutput-nserv)). We only use four inputs and do not additionally include
service input to make the analyses coherent with both the analyses relying on the NBER-CES database
and the theoretical analyses using the aggregate data. The price indexes of four inputs are measured with
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energy (nenergy/renergy), material (nmat/rmat), capital (ncap/rcap), and labor (nlabor/rlabor). Table A.4
reports the first-stage regression results for the instrumental variables used in this paper.

Table A.1: NBER-CES: Summary statistics

Variable Mean Std. Dev. Min. Max. N
NAICS 6-digit Codes 327009.662 8889.717 311111 339999 24596
Year ranges from 58 to 09 1983.5 15.009 1958 2009 24596
Total employment in 1000s 34.814 45.053 0.2 559.9 24167
Total payroll in $1m 735.896 1252.867 2.9 16162.9 24167
Production workers in 1000s 25.423 33.651 0.2 459.9 24167
Production worker hours in 1m 50.64 66.823 0.3 904.1 24167
Production worker wages in $1m 443.796 736.828 1.8 10475.2 24167
Total value of shipments in $1m 4799.495 13196.309 19.3 732728.4 24167
Total cost of materials in $1m 2620.97 9721.219 8.800 648048.4 24167
Total value added in $1m 2190.409 4710.187 9.700 111187.9 24167
Total capital expenditure in $1m 156.655 462.108 0.1 17601.6 24167
End-of-year inventories in $1m 585.429 1433.618 1.3 40084.9 24162
Cost of electric & fuels in $1m 97.69 360.53 0.1 14201.5 24167
Total real capital stock in $1m 2757.95 6388.03 4.1 120110.3 24167
Real capital: equipment in $1m 1664.517 4145.339 1.9 88454.600 24167
Real capital: structures in $1m 1093.433 2418.355 2.2 38874.4 24167
Deflator for VSHIP 1997=1.000 0.799 1.552 0.044 47.409 24167
Deflator for MATCOST 1997=1.000 0.718 0.357 0.127 2.777 24167
Deflator for INVEST 1997=1.000 0.694 0.309 0.183 1.581 24167
Deflator for ENERGY 1997=1.000 0.695 0.402 0.087 2.233 24167
5-factor TFP annual growth rate 0.003 0.066 -0.642 1.387 23694
5-factor TFP index 1997=1.000 0.937 0.257 0.012 13.192 24167
4-factor TFP annual growth rate 0.003 0.066 -0.642 1.387 23694
4-factor TFP index 1997=1.000 0.936 0.257 0.011 13.193 24167
production worker hours per worker in 1000s 2.004 0.119 1.28 3.228 24167
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Table A.2: KLEMS: Summary statistics

Variable Mean Std. Dev. Min. Max. N
Year 1999.5 7.502 1987 2012 1560
Output (nominal) 217.215 228.333 11.28 1340.936 1560
Capital (nominal) 40.923 54.045 0.546 444.439 1560
Labor (nominal) 75.613 100.084 -3.754 585.102 1560
Energy (nominal) 7.002 13.405 0.01 147.426 1140
Material (nominal) 52.026 79.129 0.061 559.08 1140
Service (nominal) 58.693 73.723 1.44 531.024 1140
Output (real) 98.264 53.973 15.645 585.384 1560
Capital (real) 80.11 26.019 4.508 144.119 1560
Labor (real) 110.863 43.658 22.538 501.529 1560
Energy (real) 166.923 193.957 18.512 1835.41 1140
Material (real) 182.738 373.762 19.853 3605.611 1140
Service (real) 113.466 67.521 16.226 634.521 1140
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Table A.3: NBER-CES: Regressing Inputs on Input Prices

(1) (2) (3) (4)
Energy Material Capital Worker

energy price(t-1) -0.072 0.163∗∗ -0.032 0.084
(0.078) (0.071) (0.052) (0.061)

energy price(t-2) -0.473∗∗∗ -0.046 -0.110∗∗ -0.211∗∗∗
(0.078) (0.071) (0.052) (0.060)

material price(t-1) 0.176∗∗ -0.296∗∗∗ -0.163∗∗∗ 0.001
(0.081) (0.067) (0.047) (0.057)

material price(t-2) -0.223∗∗∗ -0.256∗∗∗ -0.091∗ 0.016
(0.082) (0.067) (0.048) (0.058)

investment price(t-1) -2.867∗∗∗ 1.499∗∗∗ 0.565∗ -2.530∗∗∗
(0.419) (0.524) (0.318) (0.386)

investment price(t-2) 3.231∗∗∗ -1.914∗∗∗ -0.871∗∗∗ 2.806∗∗∗
(0.440) (0.547) (0.331) (0.404)

payroll(t-1) 0.307∗∗∗ 0.522∗∗∗ 0.145∗∗ -0.027
(0.105) (0.103) (0.063) (0.090)

payroll(t-2) 0.092 0.122 0.438∗∗∗ -0.050
(0.107) (0.104) (0.064) (0.090)

Constant -0.001 -0.001 -0.001 -0.000
(0.003) (0.003) (0.002) (0.002)

F-stat 52.37 93.54 102.29 13.95
Observations 22759 22759 22759 22759

Note. Each double-demeaned input is regressed on all 8 double-demeaned lagged input prices used in
Equation (2.6). Note that the instrumental variables are demeaned across time only using past information.
“Energy” (energy/pien) is the quantity of energy, “Material” ((matcost/pimat) - (energy/pien)) is the
quantity index of the material, excluding the energy, “Capital” (cap) is the real capital, and “Worker”
(prode) is the number of workers. The “energy price” is the energy deflator (pien), the “material price” is
the material deflator (pimat), the “investment price” is the investment deflator (piinv), and the “payroll” is
the average wage of all workers (pay/emp).
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Table A.4: KLEMS: Regressing Inputs on Input Prices

(1) (2) (3) (4)
Energy Material Capital Worker

payroll(t-1) -0.030 -0.239∗∗ 0.245∗∗∗ -0.130∗∗∗
(0.100) (0.101) (0.061) (0.044)

investment price(t-1) 0.064 0.090 -0.240∗∗∗ 0.088∗∗∗
(0.052) (0.068) (0.029) (0.020)

material price(t-1) 0.122∗∗∗ 0.019 -0.256∗∗∗ -0.228∗∗∗
(0.042) (0.051) (0.021) (0.018)

energy price(t-1) 0.723∗∗∗ 0.198∗ -0.139∗∗ 0.123∗∗
(0.113) (0.117) (0.060) (0.061)

Constant -0.006 0.008 0.060∗∗∗ 0.061∗∗∗
(0.011) (0.011) (0.007) (0.006)

F-stat 14.34 4.14 65.75 42.33
Observations 1062 1062 1062 1062

Note. Each double-demeaned input is regressed on all 4 double-demeaned lagged input prices used in
Equation (2.6). Note that the instrumental variables are demeaned across time only using past information.
“Energy” (renergy) is the real energy, “Material” (rmat) is the real material, “Capital” (rcap) is the real
capital, “Worker” (rlabor) is the number of workers. The “energy price” is the energy deflator
(nenergy/renergy), the “material price” is the material deflator (nmat/rmat), the “investment price” is the
capital deflator (ncap/rcap), and the “payroll” is the labor deflator (nlabor/rlabor).
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Table B.1: Estimation of Equation (2.6), Using Standard Demeaning

Dependent Variable: Energy Share
NBER-CES KLEMS

(1) (2) (3) (4) (5) (6)
Labor 1.347*** 1.343*** 1.155*** 1.530 1.622*** 1.318**

(0.395) (0.365) (0.327) (1.082) (0.629) (0.652)

Energy -0.347 -0.359* -0.407** 1.218* 0.727** 1.481***
(0.231) (0.189) (0.195) (0.713) (0.371) (0.431)

Material 0.257 0.180 1.686 0.774
(0.227) (0.157) (1.750) (0.798)

Capital -0.190 0.131 0.956 0.506
(0.370) (0.200) (1.042) (0.448)

Observations 23221 23221 23221 1080 1080 1080

Note. Table B.1 replicates Table 1 by using the lagged double-demeaned input prices in a standard way (using both past and
forward prices to demean the instruments).

Appendix B Empirical Results: Robustness

All the robustness exercises rely on our main NBER-CES manufacturing database. We also check the
results’ robustness using the KLEMS data whenever necessary data are available. These analyses include
those using the instrumental variables demeaned in a standard manner (Appendix B.1), using the two-
and three-year lagged input prices as the instrumental variables (Appendix B.2), allowing input-specific
adjustment cost (Appendix B.4), and testing the validity of the CES production function (Appendix
B.6). On the other hand, controlling additional variables in Appendix B.3 and fixed cost of production
in Appendix B.5 could not be conducted with the KLEMS data due to the lack of observations with the
necessary controls.

B.1 Using Standard Double-demeaning of Instrumental Variables

This section presents the estimation results based on lagged input prices, double-demeaned in a standard
manner that utilizes both past and forward information. The complementarity between labor and energy is
largely robust to this specification.

B.2 Using Two- and Three-year Lagged Input Prices

As a robustness exercise, we use two- and three-year lagged input prices as instrumental variables for both
the NBER-CES and KLEMS data. Table B.2 presents the results. The estimated key complementarity
parameter between energy and production workers is still positive and statistically significant at the
conventional level across different specifications and the two datasets.
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Table B.2: Estimation of Equation (2.6), Using Two- and Three-year Lagged Instruments

NBER-CES KLEMS

(1) (2) (3) (4) (5) (6)
Labor 1.056*** 1.144*** 1.115*** 1.282** 1.330** 1.593**

(0.345) (0.308) (0.315) (0.598) (0.525) (0.712)

Energy -0.299 -0.356* -0.334* 1.484*** 1.314*** 1.468***
(0.212) (0.197) (0.196) (0.242) (0.217) (0.312)

Material 0.217 0.093 -0.442 -0.276
(0.182) (0.125) (0.303) (0.293)

Capital -0.288 0.076 0.292 0.213
(0.302) (0.186) (0.285) (0.348)

Observations 22286 22286 22286 942 942 942

Note. The regression specifications are identical to those in Table 1, except that the two- and three-year lagged input prices
are used as instrumental variables. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

B.3 Allowing Additional Control Variables

This section explicitly considers the potential omitted variables that might be correlated with our instrumen-
tal variables when estimating Equation (2.6). For our baseline approach, we assume that the instrumental
variables—the double-demeaned lagged input prices—are not correlated with the double-demeaned wedge
term τ . This assumption is consistent with a model without an industry-time-varying energy wedge and
the non-parametric estimation strategy in Gandhi et al. (2020). However, in a more general class of models,
our assumption could be violated. For example, in a dynamic model that allows the heterogeneity of output
price rigidity and variation in input prices across sectors, the industry-time-varying lagged input prices
could be correlated with the industry-time-varying contemporaneous price-cost markups, which is a part of
the industry-time-varying contemporaneous wedge τe.

To address this concern, we directly control the potential omitted variables and re-estimate the
first-order conditions. First, we measure the industry-level market power and directly control it. We
carefully follow previous studies to measure the industry-time-varying price-cost markups (De Loecker et al.
2020) and the Lerner index (Gutierrez and Philippon 2017) with Compustat data. Since previous studies
discuss the methodology in detail, we briefly state how we measure these two variables.

In estimating the price-cost markups, we first use two measures of inputs available in Compustat data,
specifically, the cost of goods sold (COGS) and capital, to estimate the output elasticity with respect to the
COGS. With the assumption of the firm-level Cobb-Douglas technology, this elasticity equals the coefficient
of the COGS input. We follow Olley and Pakes (1996) for our estimation and allow the elasticity to vary
across NACIS 2-digit industries. We leverage the firm-level first-order condition to recover the price-cost
markups, the estimated elasticity divided by the COGS input share. Then, we aggregate the markups
across firms within each 6-digit NAICS industry by using the weight of a sale to recover the industry-level
markups. Using a cost-based weight does not make much difference in the results. We measure the Lerner
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index as the operating income-to-sales ratio in each 6-digit NAICS industry.
In addition to the two measures of market power, we consider four other control variables to address

the industry-time-varying contemporaneous wedge term. Given that standard macroeconomic models
predict markup heterogeneity based on price rigidity, we introduce the price rigidity measure from Bils et al.
(2013). In light of the literature that links price markup to inventory, we include the inventory-to-sales
ratio. We also measure the external finance dependence following Rajan and Zingales (1998) to control the
financial friction that potentially prevents the optimal use of the energy input.

Finally, although the adjustment costs for the energy input are typically assumed away in previous
studies, as a robustness check, we integrate the adjustment cost term explicitly. By assuming a quadratic

adjustment cost Φ(V ijt) =
ηi

2

P ijt
Pjt
V ijt

(
V ijt

V ij,t−1
− 1
)2

and solving for the first-order condition (2.5) again, we
have

ŝi =

[∑
k

δikV̂
k

]
− ϕ̂i + τ̂ i, (B.1)

where we have a new term in our equation, ϕ̂ijt ≡ ηi
(
V̂ ijt − V̂ ij,t−1 −

Et[V̂
i
j,t+1]−V̂

i
jt

1+r̄

)
with the real interest

rate r. Given a small r̄ and the (scaled) forecast error εj,t+1 ≡ ηi

1+r̄ (V̂
i
j,t+1 − Et[V̂

i
j,t+1]), we have ϕ̂ijt =

ηi
(
V̂ ijt − V̂ ij,t−1 −

V̂ ij,t+1−V̂
i
jt

1+r̄

)
+ εj,t+1 ≈ −ηi∆2V̂ ij,t+1 + εj,t+1. We include the double-differenced and

double-demeaned energy input (∆2 ˆ̂V ej,t+1) and estimate ηe by instrumenting it with the corresponding
lagged input price, which is demeaned only using the past information, to address the measurement error
problem that arises from the forecast error. Because Et[εj,t+1] = 0, the instruments are orthogonal to εj,t+1

and do not violate the exclusion restriction.
Table B.3 shows the empirical results. Regardless of the additional control variables, capturing market

power, price rigidity, inventory, financial friction, and adjustment costs, our main empirical results are
robust: the complementarity parameter between labor and energy inputs stays positive and statistically
significant at the conventional level. Columns (1) and (2) utilize the double-demeaned markup and Lerner
index. The coefficients of the measure of market power are intuitive since the market power lowers the input
share in a large class of models. Columns (3)-(6) control the measures of price rigidity, inventory-to-sales,
financial friction, and adjustment cost to ease the related concerns. Consistent with the previous studies,
we do not find empirical evidence of the existence of energy adjustment costs (column (6)).

We also assess the cyclicality of returns to scale conditional on each of these six control variables. We
measure the double-demeaned returns to scale by subtracting the double-demeaned wedge term from the
double-demeaned energy share, which is a double-demeaned version of Equation (2.8). Figure B.1 shows
that the estimated returns to scale still preserve a larger positive correlation with the value added in each
industry.

B.4 Returns to Scale: Allowing an Input-Specific Adjustment Cost

In recovering the returns to scale in Section 2.3, we assume that τ i = τ . Although this specification is
conventional in the previous studies and consistent with the DSGE model presented in Section 3, one
concern is that the adjustment cost might be different across inputs. This section addresses this concern by
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Figure B.1: Returns to Scale and Value-Added

(a) Control Markup (b) Control Lerner Index

(c) Control Frequency of Price Changes (d) Control RZ Measure

(e) Control the Adjustment Costs (f) Control Inventory-to-Sales

Note. Figure B.1 replicates Figure 1a, except including additional control variables. The slopes of the linear lines in Figures
B.1a, B.1b, B.1c, B.1d, B.1e, and B.1f are .79, .78, 1.1, 1.4, .86, and 1.08 respectively.
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Table B.3: Estimation of Equation (2.6) with Additional Controls

IV (Lagged Input Prices)

(1) (2) (3) (4) (5) (6)
Labor 1.355*** 1.364*** 1.482*** 1.506*** 1.946*** 1.217***

(0.485) (0.501) (0.464) (0.426) (0.562) (0.379)

Markup -0.169
(0.121)

Lerner index -74.912*
(41.471)

Frequency of price changes -0.016*
(0.009)

Inventory 0.504***
(0.125)

RZ measure -0.012***
(0.004)

Adj. cost 0.528
(1.107)

Observations 14427 14427 17837 22756 22759 21813

Note. Table B.3 replicates the specification in Table 1 column (1) augmented by additional control variables. Markup, Lerner
index, Frequency of price changes, RZ measure, and Inventory are controlled directly, and the Adj. cost is instrumented with
the corresponding lagged input price. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

allowing the input-specific adjustment cost and showing that the returns to scale procyclicality is robust to
this concern.

Consider the firm’s cost minimization problem with the translog production function (2.2):

minC =
∑
i

[
P i

P
V i +Φ(V i)

]

s.t.

ln(Y ) = ln(z) +
∑
i

βi ln(V
i) +

∑
i

∑
k

βik
2

ln(V i) ln(V k) with βik = βki,

where P i

P ≡ pi is the real input price and Φ(V i) is the input-specific adjustment cost for input V i.
We consider two functional form assumptions on the adjustment cost Φ(V i). First, consider a convex

adjustment cost with the following functional form, Φ(V i) ≡ ηi

2
P i

P V
i
(
V i

V iss
− 1
)2

. In this specification,
adjustment costs depend on the current variables and steady-state values, similar to the specification in
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Rotemberg and Woodford (1999). Solving the cost-minimization problem with respect to V i yields

si

[
1 +

ηi

2

(
V i

V̄ i
− 1

)2

+ ηi
(
V i

V̄ i
− 1

)(
V i

V̄ i

)]
= mc

[
βi +

∑
k

βik ln(V
k)

]
, (B.2)

where mc is the Lagrange multiplier of the production technology, which is the firm’s real marginal cost or
the inverse price markup. Rearranging and log-linearizing (B.2) leads to

ŝi =

[∑
k

δikV̂
k

]
+ m̂c− ϕ̂i, (B.3)

where δik ≡ βik
(
mc
s̄i

)
and ϕ̂i ≡ ηiV̂ i. Equation (B.3) is a special case of Equation (2.5) with τ̂ i = m̂c− ϕ̂i;

the input-specific wedge τ i is the linear combination of the input-specific term arising from the adjustment
costs and the inverse price markup in this setup.

By adding Equation (B.2) across all input shares and combining the resulting equation with the
returns to scale Equation (2.7), we have

rts =
1

mc

∑
i

si

[
1 +

ηi

2

(
V i

V̄ i
− 1

)2

+ ηi
(
V i

V̄ i
− 1

)(
V i

V̄ i

)]
. (B.4)

The log-linearization of (B.4) leads to

r̂ts = ŝall − m̂c+ ϕ̂all, (B.5)

where sall =
∑
i s
i and ϕ̂all ≡

∑
i

(
s̄i

s̄all

)
ϕ̂i =

∑
i

(
s̄i

s̄all

)
ηiV̂ i.

Equation (B.5) makes it clear that the returns to scale procyclicality results do not likely change with
the presence of the input-specific adjustment cost. Note that Equation (2.8) allows the common wedge τ to
different inputs, such as the real marginal cost mc. Then, the key difference between Equations (2.8) and
(B.5) is ϕ̂all, capturing the effects of the input-specific adjustment cost. However, because the input V̂ i is
procyclical in the data, regardless of the degree of input-specific adjustment cost η, the adjustment cost
term ϕ̂all tends to be procyclical. Thus, if adjustment costs exist in any input, they would strengthen the
procyclicality of the returns to scale.

Second, we assume an alternative adjustment cost function, depending on lagged inputs, as is the
case for the energy input in Appendix B.3: Φ(V i) = ηi

2
Pi
P V

i
(

V it
V it−1

− 1
)2

. Under this assumption, one can
also derive Equation (B.5) with:

ϕ̂allt =
∑
i

s̄i

s̄all
ϕ̂i,

where

ϕ̂it = ηi

(
V̂ it − V̂ it−1 −

Et[V̂
i
t+1]− V̂ it
1 + r̄

)
,
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and r is the real interest rate. Since
(
V̂ it − V̂ it−1 −

Et[V̂
i
t+1]−V̂

i
t

1+r̄

)
≈ −Et[∆2V̂ it+1] with a small r̄, the

procyclicality of returns to scale might change if −∆2V̂ it+1 is strongly countercyclical. We assess the
cyclicality of −∆2V̂ it+1 by correlating this measure with the value added for all inputs. We find that
−∆2V̂ it+1 is either procyclical or acyclical and is not likely to weaken the returns to scale procyclicality.
Based on the NBER-CES database, the correlation of −∆2V̂ it+1 with Ŷt is 0.14, 0.0001, 0.12, and 0.07
for labor, capital, material, and energy, respectively. Based on the KLEMS database, the correlation of
−∆2V̂ it+1 with Ŷt is 0.1, 0.03, 0.06, and 0.06 for labor, capital, material, and energy, respectively.

B.5 Fixed Costs in Production

This section extends the empirical analyses in Section 2 by allowing the fixed cost of production, consistent
with the DSGE model presented in Section 3. In the translog production function Equation (2.2), we
introduce the fixed cost as in Equation (3.1):

ln(Y ) = ln(z) +
∑
i

βi ln(V
i)︸ ︷︷ ︸

Cobb-Douglas

+
∑
i

∑
k

βik
2

ln(V i) ln(V k)︸ ︷︷ ︸
second-order terms

− υ︸︷︷︸
fixed costs

with βik = βki
, (B.6)

where υ is the fixed cost of production.
As in the DSGE model, we assume that firms face monopolistic competition and earn zero profit at

the steady state. Under these assumptions, we derive the first-order condition with respect to input V i and
rearrange the terms to obtain

si = mc
Y + υ

Y

[
βi +

∑
k

βik ln(V
k)

]
, (B.7)

where mc is the real marginal cost. Equation (B.7) is a special case of Equation (2.4) with τ i = τ = mcY+υ
Y .

As in our main analyses, we choose an energy input as a choice variable (V i = E), allow the variables
to change across industry and time, and log-linearize and double-demean Equation (B.7). To recover the
fixed cost of production in the data, we use the zero-profit condition at the steady state. This condition
implies that firms use their profit to recover the fixed cost of production at the steady state: υ = (Φ− 1)Ȳ ,
where Φ is the gross price markup at the steady state. Replacing the fixed cost of production, log-linearizing,
double-demeaning, and rearranging Equation (B.7) with V i = E lead to

ˆ̂sejt +
Φj − 1

Φj
ˆ̂Yjt =

∑
k

δek
ˆ̂V kjt + ̂̂mcjt. (B.8)

Note that Equation (B.8) is a special case of Equation (2.6) with ˆ̂τejt = ̂̂mcjt − Φj−1
Φj

ˆ̂Yjt. The steady-state
industry-specific value of price markup Φj is recovered from the simple average of markup across years
(1958-2009) within the industry, where the industry-time-varying price-cost markup is measured from
Compustat data following De Loecker et al. (2020), as described in Appendix B.3. With the industry-specific
price markup measure, Equation (B.8) can be estimated by either treating the double-demeaned marginal
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cost as a residual or controlling the double-demeaned real marginal cost (i.e., the inverse price markup)
directly as in Appendix B.3.

Table B.4: Adjusting the Fixed Cost of Production

(1) (2) (3) (4) (5) (6)
Labor 1.981∗∗∗ 1.780∗∗∗ 1.801∗∗∗ 1.205∗∗ 1.039∗∗ 1.103∗∗

(0.646) (0.590) (0.566) (0.510) (0.448) (0.440)

Energy -0.789∗∗ -0.635∗∗ -0.684∗∗ -0.365 -0.274 -0.320
(0.348) (0.298) (0.291) (0.283) (0.236) (0.244)

Material 0.280 0.388∗∗∗ 0.200 0.231∗∗∗
(0.236) (0.145) (0.154) (0.082)

Capital 0.239 0.534∗∗∗ 0.071 0.344∗∗
(0.363) (0.203) (0.266) (0.140)

Markup -0.095 -0.051 -0.057
(0.114) (0.095) (0.103)

Observations 19650 19650 19650 14427 14427 14427

Note: Columns (1)-(3) replicate the regression results in Table 1 columns (1)-(3) by redefining the left-hand side variable
by adding the term relevant to the fixed cost of production (Φj−1

Φj
ˆ̂Yjt) from the energy share. Columns (4)-(6) additionally

control the double-demeaned price markup. *, **, and *** indicate significance at the 0.1, 0.05, and 0.01 levels, respectively.

Table B.4 reports the results. Regardless of adjusting for the fixed cost of production, we still observe
that the coefficient of labor, which governs the complementarity between energy and labor, is positive and
statistically significant. Although adjusting for the price markup decreases the coefficient of labor, strong
complementarity still emerges.

Figure B.2 shows that the procyclicality of returns to scale also remains robust after adjusting for the
fixed cost of production. The returns to scale expression (2.8) does not change with the presence of the
fixed cost of production except that the wedge term τ becomes the real marginal cost, and there are changes
in the estimated production function coefficients used in recovering the returns to scale. Figure B.2a and
B.2b are based on Table B.4 columns (1) and (4), respectively. Regardless of alternative specifications, the
measure of returns to scale is positively correlated with the value added.

B.6 CES Assumption

This section considers the CES assumption on any input in the production function, including energy.
We show that the CES assumption requires

∑
k δik = 0 in Equation (2.5). We test the null hypothesis of∑

k δik = 0 for columns (1)-(6) in Table 1 and strongly reject the CES functional form assumption, as
shown in Table 1.

Without loss of generality, we consider below the special cases of a two-factor and three-factor (nested)
CES function with energy input for the exposition. It is straightforward to generalize them to four-factor
nested CES production functions.
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Figure B.2: Returns to Scale and Value-Added

(a) Adjust Fixed Cost (b) Adjust Fixed Cost and Control Markup

Note. The y-axis is the returns to scale, and the x-axis is the value added. All variables are double-demeaned across industries
and years. The slopes of the linear lines in Figures B.2a and B.2b are 1.27 and .76, respectively.

Two-input CES production functions. We begin with a two-factor CES production function. Suppose
that

y = exp(εa) (βll
ρ + βee

ρ)
1/ρ

, (B.9)

where βl + βe = 1. Two inputs are complementary when ρ < 0. A positive ρ implies that two inputs are
substitutable. When ρ = 0, Equation (B.9) simplifies to a conventional Cobb-Douglas function exp(εa)lβleβe .
In a neighborhood of this Cobb-Douglas function, we approximate Equation (B.9) to the second order as
follows.

log y = εa + βl log l + βe log e︸ ︷︷ ︸
Cobb-Douglas

+
1

2
ρβlβe (log l)

2 − ρβlβe log l · log e+
1

2
ρβlβe (log e)

2︸ ︷︷ ︸
second-order terms

+O(ρ2). (B.10)

Thus, the CES production function in Equation (B.9) includes the second-order terms with tightly
parametrized coefficients by ρ, βl, and βe. By comparing Equations (B.10) with (2.2), we obtain βll = ρβlβe,
βel = −ρβlβe, and βee = ρβlβe. As a result, βel + βee = 0, which further implies that δel + δee = 0 because
δek = βek

(
τ̄e

s̄e

)
for all k (see discussion following Equation (2.5)). We conclude that the above CES

production function is compatible with a null hypothesis δel + δee = 0 that can be tested by using the
estimated delta coefficients in Section 2.

Derivation of Equation (B.10). Let f(ρ; l, e, εa) be log y = εa + log(βll
ρ+βee

ρ)
ρ . A Taylor approximation

of log y with respect to ρ around ρ = 0 implies log y = f(ρ) = f(0) + f ′(0)ρ + O(ρ2). Because it is
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well-known that f(0) = εa + βl log l + βe log e, we focus on f ′(0) here. Note that:

f ′(ρ) =

βll
ρ log l+βee

ρ log e
βllρ+βeeρ

ρ− log (βll
ρ + βee

ρ)

ρ2
=

βll
ρ log l+βee

ρ log e
βllρ+βeeρ

− [f(ρ)− εa]

ρ
.

By L’Hospital’s rule, we obtain f ′(0) =
{
βll

ρ log l+βee
ρ log e

βllρ+βeeρ
− [f(ρ)− εa]

}′
|ρ=0. As a result, f ′(0) =

1
2

{
βll

ρ log l+βee
ρ log e

βllρ+βeeρ

}′
|ρ=0. Algebraically, we can show that:

f ′(0) = lim
ρ→0

1

2

[βll
ρ(log l)2 + βee

ρ(log e)2](βll
ρ + βee

ρ)− (βll
ρ log l + βee

ρ log e)2

(βllρ + βeeρ)2

=
1

2

[
βl(log l)

2 + βe(log e)
2 − (βl log l + βe log e)

2
]

=
1

2

[
βl(1− βl)(log l)

2 − 2βlβe log l · log e+ βe(1− βe)(log e)
2
]

=
1

2
βlβe(log l − log e)2.

Finally, we obtain the desired result:

log y = f(0) + f ′(0)ρ+O(ρ2) = εa + βl log l + βe log e+
1

2
ρβlβe(log l − log e)2 +O(ρ2).

Nested CES production functions. Next, we derive similar results for nested CES production functions.
We concentrate on nested CES functions with three inputs for exposition. First, we begin with a case where
capital is combined with a composite input of labor and energy as follows:

y = exp(εa)
[
βkk

ϕ + (βl + βe)g(ρ; l, e)
ϕ
]1/ϕ

, (B.11)

where g(ρ; l, e) = (ξll
ρ + ξee

ρ)1/ρ, βk + βl + βe = 1, ξl = βl
βl+βe

and ξe = 1− ξl. Equation (B.11) features
constant returns to scale. By repeatedly applying the above result for two-input CES functions, we obtain:

log y = εa + βk log k + (βl + βe) log g(ρ) +
1

2
ϕβk(βl + βe)(log k − log g(ρ))2 +O(ϕ2),

log g(ρ) = ξl log l + ξe log e+
1

2
ρξlξe(log l − log e)2 +O(ρ2).

With some algebra, we can show that:

(βl + βe) log g(ρ) = βl log l + βe log e+
1

2

ρβlβe
βl + βe

(log l − log e)2 +O(ρ2),

ϕ(log k − log g(ρ))2 = ϕ [log k − ξl log l − ξe log e+O(ρ)]
2
= ϕ(log k − ξl log l − ξe log e)

2 +O(ϕρ) +O(ϕρ2).

Thus, we have the following translog approximation of Equation (B.11):

log y = εa + βk log k + βl log l + βe log e

+
1

2

ρβlβe
βl + βe

(log l − log e)2 +
1

2
ϕβk(βl + βe)(log k − ξl log l − ξe log e)

2 +O(||ϕ, ρ||2),
(B.12)
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which implies that βek = −ϕβk(βl + βe)ξe, βel = −ρ βlβe
βl+βe

+ ϕβk(βl + βe)ξlξe and βee = ρ βlβe
βl+βe

+ ϕβk(βl +

βe)ξ
2
e . We conclude that βek + βel + βee = 0, and therefore, δek + δel + δee = (βek + βel + βee)

τ̄e

s̄e = 0.
We can obtain a similar result for the case where labor is combined with a composite input of capital

and energy, y = exp(εa)
[
βll

ϕ + (βk + βe)g(ρ; k, e)
ϕ
]1/ϕ, by switching the roles between k and l above.

Finally, we investigate the case where energy is combined with a composite input of capital and labor:
y = exp(εa)

[
βee

ϕ + (βk + βl)h(ρ; k, l)
ϕ
]1/ϕ, where h(ρ; k, l) = (ζkk

ρ + ζll
ρ)1/ρ, ζk = βk

βk+βl
and ζl = 1− ζk.

In this case, we have:

log y = εa + βe log e+ (βk + βl) log h(ρ) +
1

2
ϕβe(βk + βl)(log e− log h(ρ))2 +O(ϕ2),

log h(ρ) = ζk log k + ζl log l +
1

2
ρζkζl(log k − log l)2 +O(ρ2),

(βk + βl) log h(ρ) = βk log k + βl log l +
1

2

ρβkβl
βk + βl

(log k − log l)2 +O(ρ2),

ϕ(log e− log h(ρ))2 = ϕ [log e− ζk log k − ζl log l +O(ρ)]
2
= ϕ(log e− ζk log k − ζl log l)

2 +O(ϕρ) +O(ϕρ2).

Thus, we have the following translog approximation of this nested CES production function:

log y = εa + βk log k + βl log l + βe log e

+
1

2

ρβkβl
βk + βl

(log k − log l)2 +
1

2
ϕβe(βk + βl)(log e− ζk log k − ζl log l)

2 +O(||ϕ, ρ||2).

Here, βek = −ϕβe(βk+βl)ζk, βel = −ϕβe(βk+βl)ζl and βee = ϕβe(βk+βl). Again, we have βek+βel+βee =
0.

Accordingly, for any three-input nested CES production function, we have βek + βel + βee = δek +

δel + δee = 0.
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Appendix C The Medium-scale DSGE Model with Input Comple-

mentarity

In this appendix, we provide the details of our model with input complementarity in production. Building
on the Smets and Wouters (2007) model, we incorporate energy input and the complementarity between
energy and labor into the production function. We further describe how energy prices are determined in
our model.

C.1 Decision Problems and Equilibrium Conditions

C.1.1 Final good producers

The final good producers’ problem is identical to that in the Smets and Wouters (2007) model. The final
good producers solve the following problem.

max
Yt,Yt(i)

PtYt −
∫ 1

0

Pt(i)Yt(i)di s.t.
∫ 1

0

G

(
Yt(i)

Yt
;λpt

)
di = 1,

where Yt and Yt(i) are the final and intermediate goods, respectively, and Pt and Pt(i) are the corresponding
prices. G is an aggregator à la Kimball (1995), and λpt represents the (net) time-varying price markup.

Given the Lagrange multiplier µt, the FOCs are given by:

Yt : Pt =
µt
Yt

∫ 1

0

G′
(
Yt(i)

Yt
;λpt

)(
Yt(i)

Yt

)
di (C.1)

Yt(i) : Pt(i) =
µt
Yt
G′
(
Yt(i)

Yt
;λpt

)
.

By combining the above equations, we obtain the following zero-profit condition for the final good producers.

PtYt =

∫ 1

0

Pt(i)Yt(i)di. (C.2)

Furthermore, by defining τt = PtYt/µt, we can write the demand for each intermediate good as follows:

Yt(i) = Yt × (G′)−1

(
Pt(i)

Pt
τt;λ

p
t

)
. (C.3)

C.1.2 Intermediate goods producers

We extend the problem of the intermediate goods producers in the Smets and Wouters (2007) model by
introducing energy input and the complementarity between labor and energy to the production function.
The production function for the intermediate good i is given by:

Yt(i) = exp(εat )[K
s
t (i)]

βk [γtLt(i)]
βl [Et(i)]

βe

(
Lt(i)

L̄

)βel log(Et/(γtē))(Et(i)
γtē

)βel log(Lt/L)
− γtυ, (C.4)
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where Ks
t (i) is capital services used in production, Lt(i) is labor input, and Et(i) is energy input. Lt and

Et are the aggregate labor and energy, which individual firms take as given. γ represents the (gross) growth
rate on the balanced growth path. et is detrended energy, Et/γt, where its steady state value is denoted
by ē. Similarly, L̄ is the steady-state labor input. υ captures the fixed cost in production. Aggregate
productivity εat follows an exogenous process. We assume that βk + βl + βe = 1.

Firm i’s profit in period t is given by:

Πt(i) = Pt(i)Yt(i)−WtLt(i)−RktK
s
t (i)− P et Et(i), (C.5)

where Wt, Rkt , and P et are the aggregate nominal wage, the rental rate of capital, and energy price,
respectively.

Consider the following cost minimization problem:

minWtLt(i) +RktK
s
t (i) + P et Et(i)−MCt(i)(Yt(i)− Y ),

where MCt(i) is the Lagrange multiplier associated with the constraint Yt(i) ≥ Y , representing the nominal
marginal costs. The FOCs are as follows:

Lt(i) : Wt =
MCt(i)

Lt(i)

[
βl + βel log

(
Et
γtē

)]
Ỹt(i), (C.6)

Ks
t (i) : Rkt =

MCt(i)

Ks
t (i)

βkỸt(i), (C.7)

Et(i) : P et =
MCt(i)

Et(i)

[
βe + βel log

(
Lt
L̄

)]
Ỹt(i), (C.8)

where Ỹt(i) = Yt(i) + γtυ.
Equation (C.7) implies that Ks

t (i) =
MCt(i)

Rkt
βkỸt(i). Plugging similar equations for Lt(i) and Et(i)

into Equation (C.4) yields the following equation for the nominal marginal costs.

MCt(i) =

[
Rkt
βk

]βk [ Wt

γt(βl + βelêt)

]βl [ P et

βe + βelL̂t

]βe
exp{−βelL̂t(i)êt − βelL̂têt(i)− εat }, (C.9)

where êt = log
(
Et
γtē

)
, êt(i) = log

(
Et(i)
γtē

)
, L̂t = log

(
Lt
L̄

)
, and L̂t(i) = log

(
Lt(i)
L̄

)
. Similarly, we define the

following aggregate variable that each firm takes as given:

MCt =

[
Rkt
βk

]βk [ Wt

γt(βl + βelêt)

]βl [ P et

βe + βelL̂t

]βe
exp{−2βelL̂têt − εat }. (C.10)

Next, we investigate the price-setting problem under the Calvo pricing with partial indexation. Firms
can reoptimize their prices Pt(i) with the probability of 1− ζp in each period. When it cannot reoptimize,
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{Pt+s(i)} evolves in the following manner: for each s ≥ 0,

Pt+s(i) = Pt(i)Xt,s, where Xt,s =

1 s = 0(
Πt+s−1
t−1

)ιp (
Π̄s
)1−ιp

s ≥ 1
,

Πt0t1 =
Pt1
Pt0

denotes the gross price inflation from t0 to t1, and Π̄ represents the steady state gross price
inflation. As in Smets and Wouters (2007), we assume that firms choose Pt(i) by solving the following
problem when it can reoptimize in period t:

max
P̃t(i)

Et
∞∑
s=0

ζspβ
sΞt+s/Pt+s

Ξt/Pt

[
P̃t(i)Xt,s −MCt+s

]
Yt+s|t

s.t. Yt+s|t = Yt+s × (G′)−1

(
P̃t(i)Xt,s

Pt+s
τt+s;λ

p
t+s

)
,

where the demand function follows from Equation (C.3), and βs Ξt+s/Pt+sΞt/Pt
is the nominal stochastic discount

factor. With some algebra, we can show that:

∂Yt+s|t

∂P̃t(i)
= Yt+s

Xt,s
Pt+s

τt+s

G′′ =
Yt+s|t

(G′)−1

1

P̃t(i)

P̃t(i)Xt,s
Pt+s

τt+s

G′′ =
1

P̃t(i)

Yt+s|t

(G′)−1

G′

G′′ ,

where G′ and G′′ are evaluated at (Yt+s|tYt+s
;λpt+s), and (G′)−1 is evaluated at

(
P̃t(i)Xt,s
Pt+s

τt+s;λ
p
t+s

)
. Therefore,

the FOC with respect to P̃t(i) is given by:

Et
∞∑
s=0

ζspβ
sΞt+s/Pt+s

Ξt/Pt

{
Xt,sYt+s|t +

[
P̃t(i)Xt,s −MCt+s

] ∂Yt+s|t
∂P̃t(i)

}
= 0

⇒ Et
∞∑
s=0

ζspβ
sΞt+s/Pt+s

Ξt/Pt
Yt+s|t

{
P̃t(i)Xt,s

[
1 +

1

(G′)−1

G′

G′′

]
−MCt+s

1

(G′)−1

G′

G′′

}
= 0. (C.11)

Clearly, all reoptimizing firms choose the same P̃t(i), denoted by P̃t.
To compute the aggregate price index Pt, we use Equation (C.2). In period t, for each s ≥ 0, there

are (1 − ζp)ζ
s
p fractions of firms that optimized their prices in t − s for the last time. In period t, these

firms’ prices are given by P̃t−sXt−s,s. Then,

Pt =

∫ 1

0

Pt(i)
Yt(i)

Yt
di

= (1− ζp)P̃t
Yt|t

Yt
+ (1− ζp)ζpP̃t−1Xt−1,1

Yt|t−1

Yt
+ (1− ζp)ζ

2
p P̃t−2Xt−2,2

Yt|t−2

Yt
+ . . .

= (1− ζp)P̃t × (G′)−1

(
P̃t
Pt
τt;λ

p
t

)
+ (1− ζp)ζpP̃t−1Xt−1,1 × (G′)−1

(
P̃t−1Xt−1,1

Pt
τt;λ

p
t

)
+ . . . .

(C.12)
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C.1.3 Households

Household j chooses consumption Ct(j), bonds Bt(j), investment It(j), capital stock Kt(j), and capital
utilization Zt(j) to maximize the following objective function:

E0

∞∑
t=0

βt
[

1

1− σc

(
Ct(j)− hCt−1

)1−σc
exp

(
σc − 1

1 + σl
Lt(j)

1+σl

)]

subject to the budget constraint:

Ct(j) + It(j) +
Bt(j)

exp(εbt)RtPt
+ Tt

≤ Bt−1(j)

Pt
+
Wt(j)Lt(j)

Pt
+
RktZt(j)Kt−1(j)

Pt
− a(Zt(j))Kt−1(j) +

Πw
t

Pt
+

Πt
Pt

+
P et
Pt
Est ϕe

and the capital accumulation equation:

Kt(j) = (1− δ)Kt−1(j) + exp(εit)

[
1− S

(
It(j)

It−1(j)

)]
It(j). (C.13)

Wage-setting and labor supply decisions are relegated to a labor union for type j workers. Rt is the
(gross) nominal return to bonds. εbt denotes an exogenous premium in the return to bonds. Tt and Πw

t are
lump-sum taxes and profits of labor unions paid out as dividends. We assume that ϕe fraction of the global
energy production Est is produced in the US. Following Rotemberg and Woodford (1996), the corresponding
(real) revenues earned by the energy producers P et

Pt
Est ϕe are distributed to the household.

a(·) reflects the cost of changing capital utilization. Following Smets and Wouters (2007), we assume
that a(Z̄) = 0, where Z̄ = 1 is the steady state level of utilization.

As in Smets and Wouters (2007), we reparametrize a′(Z̄)
a′′(Z̄)

as 1−ψ
ψ . The amount of capital service that

households can rent to firms is given by:

Ks
t (j) = Zt(j)Kt−1(j). (C.14)

S(·) is the investment adjustment cost such that S(γ) = 0, S′(γ) = 0, and S′′(γ) = φ > 0. εit reflects
investment-specific productivity, which is exogenously determined.

Let Ξt(j) and Ξkt (j) be Lagrange multipliers associated with the budget constraint and the capital
accumulation equation, respectively. We obtain the following FOC for Ct(j):

Ct(j) : Ξt(j) = (Ct(j)− hCt−1)
−σc exp

(
σc − 1

1 + σl
Lt(j)

1+σl

)
.

Under the complete market, the marginal consumption utility Ξt(j) is the same across j. Thus, we have
Ξt = Ξt(j) for all j. Next, the FOC with respect to Zt(j) is given by the following equation:

Zt(j) :
Rkt
Pt

= a′(Zt(j)).
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Clearly, Zt(j) is the same across j and Rkt
Pt

= a′(Zt). Then, we have the following FOC with respect to
Kt(j).

Kt(j) : Ξkt (j) = βEt
[
Ξt+1

(
Rkt+1

Pt+1
Zt+1 − a(Zt+1)

)
+ Ξkt+1(j)(1− δ)

]
.

We obtain Ξkt (j) = Et
[∑∞

s=1 β
s−1(1− δ)s−1Ξt+s

(
Rkt+s
Pt+s

Zt+s − a(Zt+s)
)]

, which is the same for all j by iter-

ating the above equation forward. Therefore, we have Ξkt = βEt
[
Ξt+1

(
Rkt+1

Pt+1
Zt+1 − a(Zt+1)

)
+ Ξkt+1(1− δ)

]
.

For Bt(j) and It(j), we have the following equations:

Bt(j) : Ξt = β exp(εbt)RtEt
[
Ξt+1

Πt+1

]
,

It(j) : Ξt = Ξkt exp(ε
i
t)

[
1− S

(
It(j)

It−1(j)

)
− S′

(
It(j)

It−1(j)

)
×
(

It(j)

It−1(j)

)]
+ βEt

[
Ξkt+1 exp(ε

i
t+1)S

′
(
It+1(j)

It(j)

)
×
(
It+1(j)

It(j)

)2
]
.

Given the initial condition It−1(j) = It−1 for all j, the above second-order difference equation for {It(j)}
implies that It+s(j) for all j and s ≥ 0; therefore, Ξt = Ξkt exp(ε

i
t)
[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
×
(

It
It−1

)]
+

βEt
[
Ξkt+1 exp(ε

i
t+1)S

′
(
It+1

It

)
×
(
It+1

It

)2]
. Then, under the initial condition that Kt−1(j) = Kt−1 for all

j, Equation (C.13) implies that Kt(j) = Kt = (1 − δ)Kt−1 + exp(εit)
[
1− S

(
It
It−1

)]
It for all j. Finally,

Tobin’s Q is given by Qt =
Ξkt
Ξt

.

C.1.4 Labor unions

Labor unions set wages for each type of labor service subject to Calvo-type frictions with partial indexation.
Then, labor packers operating in a competitive environment combine different labor services using a Kimball
aggregator and sell the composite labor to firms, similar to Smets and Wouters (2007).

Specifically, the labor packers solve the following problem:

max
Lt,Lt(j)

WtLt −
∫ 1

0

Wt(j)Lt(j)dj s.t.
∫ 1

0

GL

(
Lt(j)

Lt
;λwt

)
dj = 1,

where GL is the corresponding Kimball aggregator. Then,

WtLt =

∫
Wt(j)Lt(j)dj, (C.15)

Lt(j) = Lt × (G′
L)

−1

(
Wt(j)

Wt
τL,t;λ

w
t

)
, (C.16)

where τL,t =WtLt/µL,t, λwt is the (net) wage markup, and µL,t is the Lagrange multiplier for the above
optimization problem.
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The marginal rate of substitution of type j household is given by:

MRSt(j) =
− 1

1−σc

(
Ct(j)− hCt−1

)1−σc
exp

(
σc−1
1+σl

Lt(j)
1+σl

)
(σc − 1)Lt(j)

σl

Ξt(j)
= (Ct(j)− hCt−1)Lt(j)

σl .

Similarly, we define an aggregate MRS that each labor union takes as given:

MRSt = (Ct − hCt−1)L
σl
t .

The labor unions intermediate between the households and the labor packers. Each labor union has
market power and chooses the wage of its differentiated labor subject to the labor demand (C.16) and the
Calvo-type nominal wage rigidity governed by parameter ζw. With the probability ζw, the labor union
cannot adjust wages in each period. For those that cannot adjust wages, Wt(j) will be indexed, similar to
the prices of intermediate goods:

Wt+s(j) = W̃t(j)X
w
t,s, where Xw

t,s =

1 s = 0

γs
(
Πt+s−1
t−1

)ιw (
Π̄s
)1−ιw

s ≥ 1
.

The labor unions solve the following problem when they can adjust their wages:

max
W̃t(j)

Et
∞∑
s=0

ζsw
βsΞt+s/Pt+s

Ξt/Pt

[
W̃t(j)X

w
t,s − Pt+sMRSt+s

]
Lt+s|t

s.t. Lt+s|t = Lt+s × (G′
L)

−1

(
W̃t(j)X

w
t,s

Wt+s
τL,t+s;λ

w
t+s

)
.

Similar to the intermediate good producers’ price-setting problem, we can show that

∂Lt+s|t

∂W̃t(j)
= Lt+s

Xwt,s
Wt+s

τL,t+s

G′′
L

=
Lt+s|t

(G′
L)

−1

1

W̃t(j)

W̃t(j)X
w
t,s

Wt+s
τL,t+s

G′′
L

=
1

W̃t(j)

Lt+s|t

(G′
L)

−1

G′
L

G′′
L

,

where G′
L and G′′

L are evaluated at (
Lt+s|t
Lt+s

;λwt+s), and (G′
L)

−1 is evaluated at
(
W̃t(j)X

w
t,s

Wt+s
τL,t+s;λ

w
t+s

)
.

Furthermore, the FOC with respect to W̃t(j) is given by

Et
∞∑
s=0

ζswβ
sΞt+s/Pt+s

Ξt/Pt

{
Xw
t,sLt+s|t +

[
W̃t(j)X

w
t,s − Pt+sMRSt+s

] ∂Lt+s|t
∂W̃t(j)

}
= 0

⇒ Et
∞∑
s=0

ζswβ
sΞt+s

Ξt
Lt+s|t

{
W̃t(j)X

w
t,s

Pt+s

[
1 +

1

(G′
L)

−1

G′
L

G′′
L

]
−MRSt+s

1

(G′
L)

−1

G′
L

G′′
L

}
= 0. (C.17)

Clearly, all reoptimizing unions choose the same W̃t(j), denoted by W̃t.
To compute the aggregate wage index Wt, we use Equation (C.15). In period t, for each s ≥ 0, there

are (1− ζw)ζ
s
w fractions of unions that optimized their wages in t− s for the last time. In period t, these
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unions’ wages are given by W̃t−sX
w
t−s,s. Then,

Wt =

∫ 1

0

Wt(j)
Lt(j)

Lt
dj

= (1− ζw)W̃t

Lt|t

Lt
+ (1− ζw)ζwW̃t−1X

w
t−1,1

Lt|t−1

Lt
+ . . .

= (1− ζw)W̃t × (G′
L)

−1

(
W̃t

Wt
τL,t;λ

w
t

)
+ (1− ζw)ζwW̃t−1X

w
t−1,1 × (G′

L)
−1

(
W̃t−1X

w
t−1,1

Wt
τL,t;λ

w
t

)
+ . . . .

(C.18)

C.1.5 Central bank and government policies

The central bank uses the following rule to decide the policy rate:

Rt
R̄

=

(
Rt−1

R̄

)ρ [(
Πt
Π̄

)rπ ( Y GDPt

Y GDP∗
t

)ry]1−ρ( Y GDPt /Y GDPt−1

Y GDP∗
t /Y GDP∗

t−1

)r∆y
exp(εrt ), (C.19)

where R̄ is the steady state nominal rate (gross rate) and Y GDP∗
t is the natural output. Because of

energy imports and exports, Y GDPt can deviate from the production Yt discussed in previous sections. The
parameter ρ determines the degree of interest rate smoothing.

The government budget constraint is of the form:

PtGt +Bt−1 = PtTt +
Bt

exp(εbt)Rt
, (C.20)

where Tt are nominal lump-sum taxes (or transfers).
Government spending relative to GDP on the balanced growth path is denoted by exp(gt) =

Gt
γtȳGDP

,
which is assumed to be exogenously determined.

C.1.6 Global energy market

We introduce a global energy market to our model where energy prices are determined subject to energy
demand and supply shocks. We impose a simple structure regarding the energy market to highlight the
role of input complementarity while minimizing deviation from the benchmark Smets and Wouters (2007)
model.

The global energy demand excluding the US industrial usage, Et, is denoted by Edt . The global energy
supply is denoted by Est . The market clearing condition is given by:

Et + Edt = Est . (C.21)

We assume that:

Est
γtēs

=

(
pet
p̄e

)κs
exp(εest ), (C.22)
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where εest represents exogenous disturbances to the global energy supply. κs denotes the price elasticity
of the global energy supply. pet is the real price of energy, P et /Pt, and p̄e denotes its steady-state value.
Similarly, ēs represents the steady-state value of the detrended global energy supply.

In contrast, the global energy demand excluding the US industrial usage depends on the real energy
price (pet ), US GDP (Y GDPt−1 ), real interest rates (Et−1[Rt−1/Π

t
t−1]), and exogenous disturbances to the

demand (εedt ).

Edt
γtēd

=

(
Y GDPt−1

γt−1ȳGDP

)ρey (Et−1[Rt−1/Πt]

R̄/Π̄

)ρerr (pet
p̄e

)−κd
exp(εedt ), (C.23)

where κd denotes the price elasticity of the global energy demand. Clearly, global economic activity
positively affects energy demand (Balke and Brown, 2018; Kilian, 2009). We include (lagged) US GDP and
real interest rates on the right-hand side as proxies for global economic activity. Furthermore, real interest
rates capture states of financial markets that might affect energy prices, as discussed in Basak and Pavlova
(2016) (see also Kilian, 2014).

C.1.7 Resource constraints

From the households budget constraint and the government budget constraint, we obtain:

Ct + It +Gt =
Wt

Pt
Lt +

Rkt
Pt
ZtKt−1 − a(Zt)Kt−1 +

Πwt
Pt

+
Πt
Pt

+
P et
Pt
Est ϕe.

Also, note that:

Πt =

∫ 1

0

Pt(i)Yt(i)−WtLt(i)−RktK
s
t (i)− P et Et(i)di

= PtYt −WtLt −RktK
s
t − P et Et,

Πwt =WtLt −
∫ 1

0

Wt(j)Lt(j)dj = 0. ∵ Equation (C.15)

Therefore,
Ct + It +Gt + a(Zt)Kt−1 = Yt +

P et
Pt

(Est ϕe − Et) = Y GDPt . (C.24)

That is, the US GDP consists of the final good Yt and net real energy production P et
Pt

(Est ϕe − Et) because
ϕe fractions of the global energy production occurs in the US.

C.1.8 Equilibrium conditions

We define the following detrended variables: yt = Yt
γt , ỹt =

Ỹt
γt , y

GDP
t =

Y GDPt

γt kt =
Kt
γt , kst =

Ks
t

γt = 1
γZtkt−1,

lt = Lt, et = Et
γt , e

s
t =

Est
γt , edt =

Edt
γt , it = It

γt , ct =
Ct
γt , exp(gt) =

Gt
γtȳGDP

, wt = Wt

γtPt
, rkt =

Rkt
Pt

, pet =
P et
Pt

,
p̃t =

P̃t
Pt

, w̃t = W̃t

γtWt
, mct = MCt

Pt
, mrst = MRSt

γt
, ξt = Ξtγ

σct, β̃ = βγ−σc , and Qt = Ξkt /Ξt. We further

define xt,s =
Xt,s

Πt+st

and xwt,s =
Xwt,s

γsΠt+st

.
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In terms of the detrended variables, we have the following equilibrium conditions.

(C.9) ⇒ mct =

[
rkt
βk

]βk [ wt
βl + βelêt

]βl [ pet

βe + βel l̂t

]βe
exp{−βel l̂têt − εat }, (C.25)

(C.11) ⇒ Et
∞∑
s=0

(ζpβ̃γ)
sξt+syt+s|t

{
p̃txt,s

[
1 +

1

(G′)−1

G′

G′′

]
−mct+s

1

(G′)−1

G′

G′′

}
= 0, (C.26)

where G′ and G′′ are evaluated at (
yt+s|t
yt+s

;λpt+s), and (G′)−1 is evaluated at
(
p̃txt,sτt+s;λ

p
t+s

)
. xt,s is given

by Xt,s
Πt+st

.

(C.12) ⇒ 1 = (1− ζp)p̃t × (G′)−1 (p̃tτt;λ
p
t ) + (1− ζp)ζpp̃t−1xt−1,1 × (G′)−1 (p̃t−1xt−1,1τt;λ

p
t ) + . . . .

(C.27)

Similarly,

(C.17) ⇒ Et
∞∑
s=0

(ζwβ̃γ)
sξt+slt+s|t

{
w̃tx

w
t,s

[
1 +

1

(G′
L)

−1

G′
L

G′′
L

]
−mrst+s

1

(G′
L)

−1

G′
L

G′′
L

}
= 0, (C.28)

(C.18) ⇒ wt = (1− ζw)w̃t × (G′
L)

−1

(
w̃t
wt
τL,t;λ

w
t

)
+ (1− ζw)ζww̃t−1x

w
t−1,1 × (G′

L)
−1

(
w̃t−1x

w
t−1,1

wt
τL,t;λ

w
t

)
+ . . . .

(C.29)

where mrst = (ct − h/γct−1)l
σl
t . Furthermore, G′

L and G′′
L are evaluated at (

lt+s|t
lt+s

;λwt+s), and (G′
L)

−1 is

evaluated at
(
w̃tx

w
t,s

wt+s
τL,t+s;λ

w
t+s

)
.

Dispersion of log consumption and labor across j is of the second order. Therefore, to the first order,
the followings hold:

Ξt = (Ct(j)− hCt−1)
−σc exp

(
σc − 1

1 + σl
Lt(j)

1+σl

)
⇒ ξt = (ct −

h

γ
ct−1)

−σc exp

(
σc − 1

1 + σl
l1+σlt

)
,

(C.30)

Ξt = β exp(εbt)RtEt
[
Ξt+1

Πt+1

]
⇒ ξt = β̃ exp(εbt)RtEt

[
ξt+1

Πt+1

]
. (C.31)

Similarly, to the first order, the followings hold:

(C.6) ⇒ wt =
mct
lt

[βl + βel log (et/ē)] ỹt, (C.32)

(C.7) ⇒ rkt =
mct
kst

βkỹt, (C.33)

(C.8) ⇒ pet =
mct
et

[
βe + βel log

(
lt/l̄
)]
ỹt, (C.34)
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where ỹt = Ỹt
γt =

Yt+γ
tυ

γt .

Rkt
Pt

= a′(Zt) ⇒ rkt = a′(Zt), (C.35)

(C.13) ⇒ kt =
1− δ

γ
kt−1 + exp(εit)

[
1− S

(
γit
it−1

)]
it, (C.36)

(C.14) ⇒ kst =
1

γ
Ztkt−1. (C.37)

Furthermore,

Ξt = Ξkt exp(ε
i
t)

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
×
(

It
It−1

)]
+ βEt

[
Ξkt+1 exp(ε

i
t+1)S

′
(
It+1

It

)
×
(
It+1

It

)2
]

⇒ 1 = Qt exp(ε
i
t)

[
1− S

(
γit
it−1

)
− S′

(
γit
it−1

)
×
(
γit
it−1

)]
+ β̃Et

[
ξt+1

ξt
Qt+1 exp(ε

i
t+1)S

′
(
γit+1

it

)
×
(
γit+1

it

)2
]
.

(C.38)

Tobin’s q is given by

Ξkt = βEt
[
Ξt+1

(
Rkt+1

Pt+1
Zt+1 − a(Zt+1)

)
+ Ξkt+1(1− δ)

]
⇒ Qt = β̃Et

[
ξt+1

ξt

{
rkt+1Zt+1 − a(Zt+1) +Qt+1(1− δ)

}]
. (C.39)

To the first order,

(C.4) ⇒ yt = exp(εat )[k
s
t ]
βk [lt]

βl [et]
βe exp

(
βel log(lt/l̄) log(Et/(γ

tē))
)
− υ

= exp(εat )[k
s
t ]
βk [lt]

βl [et]
βe − υ. (C.40)

(C.24) ⇒ ct + it + exp(gt)ȳ
GDP + a(Zt)

kt−1

γ
= yGDPt , (C.41)

(C.24) ⇒ yt + pet (e
s
tϕe − et) = yGDPt . (C.42)

Finally, the equilibrium conditions in the energy market are as follows:

(C.21) ⇒ et + edt = est , (C.43)

(C.22) ⇒ est
ēs

=

(
pet
p̄e

)κs
exp(εest ), (C.44)

(C.23) ⇒ edt
ēd

=

(
yGDPt−1

ȳGDP

)ρey (Et−1[Rt−1/Πt]

R̄/Π̄

)ρerr (pet
p̄e

)−κd
exp(εedt ), (C.45)
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(C.19) ⇒ Rt
R̄

=

(
Rt−1

R̄

)ρ [(
Πt
Π̄

)rπ ( yGDPt

yGDP∗
t

)ry]1−ρ( yGDPt /yGDPt−1

yGDP∗
t /yGDP∗

t−1

)r∆y
exp(εrt ), (C.46)

where yGDP∗
t is the detrended natural level of output under the flexible prices and wages equilibrium

without price and wage markup shocks.

C.2 Steady State of the Economy

We assume the following steady-state values:

ε̄a = ε̄i = ε̄b = ε̄r = ε̄ed = ε̄es = 0,

(C.25) ⇒ m̄c =

[
r̄k

βk

]βk [ w̄
βl

]βl [ p̄e
βe

]βe
, (C.47)

(C.26) ⇒ Φ ≡ 1 + λ̄p =
1

m̄c
=

1
(G′)−1

G′

G′′

1 + 1
(G′)−1

G′

G′′

, (C.48)

where G′ and G′′ are evaluated at (1; λ̄p), and (G′)−1 is evaluated at
(
τ̄ ; λ̄p

)
. Because the steady-state

profit of the firms producing intermediate goods, given by λ̄pȳ − υ, should be zero, it follows that υ = λ̄pȳ.

(C.27) ⇒ p̃t = 1, G′(1; λ̄p) = τ̄. (C.49)

Similarly,

(C.28) ⇒ Φw ≡ 1 + λ̄w =
w̄

m̄rs
=

1
(G′

L)
−1

G′
L

G′′
L

1 + 1
(G′

L)
−1

G′
L

G′′
L

⇒ w̄ = Φwm̄rs, (C.50)

where m̄rs = (1− h/γ)c̄l̄σl .

(C.29) ⇒ w̄ = ¯̃w,G′
L(1; λ̄

w) = τ̄L, (C.51)

where G′
L and G′′

L are evaluated at (1; λ̄w), and (G′
L)

−1 is evaluated at
(
τ̄L; λ̄

w
)
.
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(C.30) ⇒ ξ̄ = (c̄− h

γ
c̄)−σc exp

(
σc − 1

1 + σl
l̄1+σl

)
, (C.52)

(C.31) ⇒ ξ̄ = β̃R̄
ξ̄

Π̄
⇒ Π̄ = β̃ξ̄. (C.53)

Because υ = λ̄pȳ, ¯̃y = ȳ + υ = (1 + λ̄p)ȳ = Φȳ = 1
m̄c ȳ. Therefore,

(C.32) ⇒ w̄l̄ = m̄cβl ¯̃y = βlȳ, (C.54)

(C.33) ⇒ r̄kk̄s = m̄cβk ¯̃y = βkȳ, (C.55)

(C.34) ⇒ p̄eē = m̄cβe ¯̃y = βeȳ. (C.56)

Given that Z̄ = 1,

(C.35) ⇒ r̄k = a′(1), (C.57)

(C.36) ⇒ k̄ =
1− δ

γ
k̄ + ī ⇒ ī

k̄
= 1− 1− δ

γ
, (C.58)

(C.37) ⇒ k̄s =
1

γ
k̄. (C.59)

Furthermore,

(C.38) ⇒ Q̄ = 1, (C.60)

(C.39) ⇒ r̄k =
1

β̃
− (1− δ), (C.61)

(C.40) ⇒ ¯̃y = ȳ + υ = [k̄s]βk [l̄]βl [ē]βe . (C.62)

Also,

(C.41) ⇒ c̄+ ī+ exp(ḡ)ȳGDP = ȳGDP , (C.63)

(C.42) ⇒ ȳGDP

ȳ
= 1 + p̄e

(
ēs

ē

ē

ȳ
ϕe −

ē

ȳ

)
= 1 + βe(ϕe/se − 1), (C.64)

where se ≡ ē
ēs . For the last equality, we use Equation (C.56).

Using the above results, we can derive the consumption and investment shares of GDP.

ī

ȳGDP
=
ī

k̄

k̄

k̄s
k̄sr̄k

ȳ

ȳ

r̄kȳGDP
=

(
1− 1− δ

γ

)
γ

βk
1
β̃
− (1− δ)

[
1 + βe

(
ϕe
se

− 1

)]−1

, (C.65)

c̄

ȳGDP
= 1− ī

ȳGDP
− exp(ḡ). (C.66)
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The following ratio will be used in the log-linearized system:

m̄rs× l̄

c̄
=

1

Φw

w̄l̄

ȳ

ȳ

ȳGDP
ȳGDP

c̄
=

1

Φw
βl

[
1 + βe

(
ϕe
se

− 1

)]−1 [
c̄

ȳGDP

]−1

, (C.67)

r̄kk̄s

ȳGDP
=
r̄kk̄s

ȳ

ȳ

ȳGDP
= βk

[
1 + βe

(
ϕe
se

− 1

)]−1

. (C.68)

Finally,

(C.43) ⇒ se =
ē

ēs
, 1− se =

ēd

ēs
. (C.69)

Because p̄e is not separately identified with other parameters characterizing the energy market in
the log-linearized system, we assume that p̄e = 1. Given r̄k in Equation (C.55), Equations (C.47) and
(C.48), we can derive w̄. Next, we can find ȳ numerically in the following manner. Given ȳ, we can obtain
c̄ = c̄

ȳGDP
ȳGDP

ȳ ȳ. Furthermore, Equation (C.54) yields l̄ = βlȳ/w̄. Then, these values of c̄ and l̄ imply a
specific value of ξ̄ in Equation (C.52), which should equal Π̄/β̃ because of Equation (C.53).

C.3 Log-linearization

In this section, we derive the log-linearized equilibrium conditions. Hatted variables represent log deviations
from their steady-state values.

(C.25) ⇒ m̂ct = βkr̂
k
t + βlŵt + βep̂

e
t − βel(êt + l̂t)− εat , (C.70)

(C.30) ⇒ ξ̂t = −σc
(

1

1− h/γ
ĉt −

h/γ

1− h/γ
ĉt−1

)
+ (σc − 1)l̄1+σl l̂t,

(C.31) ⇒ ξ̂t = εbt + r̂t + Et
[
ξ̂t+1 − π̂t+1

]
,

where r̂t ≡ log(Rt/R̄) and π̂t = log(Πt/Π̄). By combining the two equations above, we have:

ĉt =
1

1 + h/γ
Et[ĉt+1] +

h/γ

1 + h/γ
ĉt−1 −

1− h/γ

σc(1 + h/γ)
(r̂t − Et[π̂t+1])

− m̄rs× l̄

c̄

σc − 1

σc(1 + h/γ)

(
Et[l̂t+1]− l̂t

)
+ ε̂bt . (C.71)

We used the fact that (1− h/γ)l̄1+σl = m̄rs× l̄/c̄. Furthermore, we define ε̂bt as − 1−h/γ
σc(1+h/γ)

εbt , following
Smets and Wouters (2007).

By combining Equations (C.32), (C.33), and (C.34), we obtain the following two log-linearized
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equations.

(C.32) and (C.33), ⇒ k̂st + r̂kt = ŵt + l̂t −
βel
βl
êt, (C.72)

(C.33) and (C.34), ⇒ êt + p̂et = k̂st + r̂kt +
βel
βe
l̂t. (C.73)

We also have the five equations for capital, utilization, capital service, investment, and Tobin’s Q.

(C.35) ⇒ Ẑt =
a′(1)

a′′(1)
r̂kt =

1− ψ

ψ
r̂kt , (C.74)

(C.36) ⇒ k̂t =
1− δ

γ
k̂t−1 +

(
1− 1− δ

γ

)
ît +

(
1− 1− δ

γ

)
(1 + β̃γ)φγ2ε̂it, (C.75)

(C.37) ⇒ Ẑt = k̂st − k̂t−1, (C.76)

(C.38) ⇒ ît =
1

1 + β̃γ
ît−1 +

β̃γ

1 + β̃γ
Et [̂it+1] +

1

(1 + β̃γ)φγ2
Q̂t + ε̂it, (C.77)

(C.39) ⇒ Q̂t = −(r̂t − Et[π̂t+1]) + β̃r̄kEt[r̂kt+1] + β̃(1− δ)Et[Q̂t+1] +
σc(1 + h/γ)

1− h/γ
ε̂bt . (C.78)

We used φ to denote S′′(γ). Similar to ε̂bt in Equations (C.71) and (C.78), we define ε̂it as 1
(1+β̃γ)φγ2

εit, and
ε̂it appears in Equations (C.75) and (C.77).

The central bank’s policy rule is as follows:

(C.46) ⇒ r̂t = ρr̂t−1 + (1− ρ)(rππ̂t + ryx̂t) + r∆y(x̂t − x̂t−1) + εrt , (C.79)

where output gap x̂t is given by log(yGDPt /ȳGDP )− log(yGDP∗
t /ȳGDP ).

From the production function and the aggregate resource constraint, we have the following equations:

(C.40) ⇒ ŷt = Φ(βkk̂
s
t + βl l̂t + βeêt + εat ), (C.80)

(C.41) ⇒ c̄

ȳGDP
ĉt +

ī

ȳGDP
ît + ĝt +

r̄kk̄s

ȳGDP
Ẑt = ŷGDPt , (C.81)

(C.42) ⇒ ŷGDPt =
ȳ

ȳGDP

{
ŷt −

[(
βe −

βeϕe
se

)
p̂et + βeêt −

βeϕe
se

êst

]}
. (C.82)

We define ĝt as exp(ḡ)
ȳGDP

(gt − ḡ).
We have three equations characterizing the energy market:

(C.43) ⇒ seêt + (1− se)ê
d
t = êst , (C.83)

(C.44) ⇒ êst = κsp̂
e
t + εest , (C.84)

(C.45) ⇒ êdt = ρey ŷ
GDP
t−1 + ρerr(r̂t−1 − Et−1[π̂t])− κdp̂

e
t + εedt . (C.85)
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C.3.1 Derivation of the New Keynesian price Philips curve

It remains to derive the New Keynesian price and wage Phillips curves from Equations (C.26) to (C.29).
For this purpose, it is useful to derive the following facts regarding a generic Kimball aggregator G such
that pτ = G′(y;λ) or y = (G′)−1(pτ ;λ). Suppose that ȳ = p̄ = 1; therefore, τ̄ = G′(1; λ̄). Then, by
log-linearizing pτ = G′(y;λ), we have:

p̂+ τ̂ =
G′′

G′ ŷ +
G′
λ

G′ λ̄λ̂,

where G′
λ ≡ ∂G′

∂λ . We assume that G′
λ(1; λ̄) = 0.1 Therefore, we have ŷ = G′(1;λ̄)

G′′(1;λ̄)
(p̂+ τ̂).

Note that Equation (C.1) and the fact that τ = PtYt/µt imply that τ =
∫ 1

0
G′(yi;λ)yidi. Then,

τ̄ τ̂ =

∫ 1

0

G′′ŷi +G′
λλ̄λ̂+G′ŷidi =

∫ 1

0

(G′′ +G′)ŷidi.

We further assume that Gλ(1; λ̄) = 0. From
∫ 1

0
G(yi;λ) = 1, we have 0 =

∫ 1

0
G′ŷi +Gλλ̄λ̂di =

∫ 1

0
G′ŷidi.

That is,
∫ 1

0
ŷidi = 0; therefore, τ̂ = 0 to the first order.

Next, using the above facts, we log-linearize the price aggregation equation (C.27). Because ¯̃p = 1,
(G′)−1(τ̄ ; λ̄) = 1, d log

[
(G′)−1 (p̃t−sxt−s,sτt;λ

p
t )
]
= G′

G′′ (ˆ̃pt−s + x̂t−s,s + τ̂) for all s ≥ 0, we have:

0 = (1− ζp)

[
ˆ̃pt +

G′

G′′

(
ˆ̃pt + τ̂t

)]
+ ζp(1− ζp)

[
ˆ̃pt−1 + x̂t−1,1 +

G′

G′′

(
ˆ̃pt−1 + x̂t−1,1 + τ̂t

)]
+ . . . .

Because:

xt−s,s =
Xt−s,s

Πtt−s
=

1, s = 0(
Πt−1
t−s−1

)ιp (
Π̄s
)1−ιp

/Πtt−s, s ≥ 1
=

exp [(π̂t−s + . . .+ π̂t−1)ιp1(s ≥ 1)]

exp [(π̂t−s+1 + . . .+ π̂t)1(s ≥ 1)]

for all s, it follows that:

∞∑
s=1

ζsp(1− ζp)x̂t−s,s =

∞∑
s=1

ζsp(1− ζp) [(π̂t−s + . . .+ π̂t−1)ιp − (π̂t−s+1 + . . .+ π̂t)]

= ζp(ιpπ̂t−1 − π̂t) + ζ2p(ιpπ̂t−2 − π̂t−1) + . . .

=

∞∑
s=1

ζsp(ιpπ̂t−s − π̂t−s+1).

1For example, Dotsey and King (2005) and Levin et al. (2007) assume that G(y;λ) =

1+λ
1+(1+λ)ψ

{
[(1 + ψ)y − ψ]

1+(1+λ)ψ
(1+λ)(1+ψ) − 1

}
+ 1. It is straightforward to verify that Gλ(1; λ̄) = G′

λ(1; λ̄) = 0 for this

specification.
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By combining the above facts, we have:

0 =

∞∑
s=0

ζsp(1− ζp)

(
1 +

G′

G′′

)
ˆ̃pt−s +

∞∑
s=1

ζsp(1− ζp)

(
1 +

G′

G′′

)
x̂t−s,s

=

∞∑
s=0

ζsp(1− ζp)

(
1 +

G′

G′′

)
ˆ̃pt−s +

(
1 +

G′

G′′

) ∞∑
s=1

ζsp(ιpπ̂t−s − π̂t−s+1)

=

(
1 +

G′

G′′

)[
(1− ζp)ˆ̃pt + ζp(ιpπ̂t−1 − π̂t)

]
+

∞∑
s=0

ζsp(1− ζp)

(
1 +

G′

G′′

)
ˆ̃pt−1−s +

(
1 +

G′

G′′

) ∞∑
s=1

ζsp(ιpπ̂t−1−s − π̂t−1−s+1)

=

(
1 +

G′

G′′

)[
(1− ζp)ˆ̃pt + ζp(ιpπ̂t−1 − π̂t)

]
.

Therefore, we obtain:

ˆ̃pt =
ζp

1− ζp
(π̂t − ιpπ̂t−1). (C.86)

Next, we log-linearize Equation (C.26) and use Equation (C.86) to derive the price Phillips curve.

(C.26) ⇒ Et
∞∑
s=0

(ζpβ̃γ)
sξt+syt+s|t

1

(G′)−1

G′

G′′

{
p̃txt,s + p̃txt,s

(G′)−1G′′

G′ −mct+s

}
= 0,

where G′ and G′′ are evaluated at (
yt+s|t
yt+s

;λpt+s), and (G′)−1 is evaluated at
(
p̃txt,sτt+s;λ

p
t+s

)
. xt,s is given

by Xt,s

Πt+st

. Because of Equation (C.48), 1
(G′)−1(τ̄ ;λ̄p)

G′(1;λ̄p)

G′′(1;λ̄p)
= G′(1;λ̄p)

G′′(1;λ̄p)
= − 1+λ̄p

λ̄p
. Thus, the terms inside the

curly brackets reduce to zero at the steady state. Furthermore,

d log
[
(G′)−1

(
p̃txt,sτt+s;λ

p
t+s

)]
= d log

(
yt+s|t

yt+s

)
=
G′(1; λ̄p)

G′′(1; λ̄p)
(ˆ̃pt + x̂t,s + τ̂t+s) =

G′(1; λ̄p)

G′′(1; λ̄p)
(ˆ̃pt + x̂t,s),

d logG′′(
yt+s|t

yt+s
;λpt+s) =

G′′′(1; λ̄p)

G′′(1; λ̄p)
d log

(
yt+s|t

yt+s

)
+
G′′
λ(1; λ̄

p)

G′′(1; λ̄p)
λ̄pλ̂pt+s,

d logG′(
yt+s|t

yt+s
;λpt+s) =

G′′(1; λ̄p)

G′(1; λ̄p)
d log

(
yt+s|t

yt+s

)
+
G′
λ(1; λ̄

p)

G′(1; λ̄p)
λ̄pλ̂pt+s =

G′′(1; λ̄p)

G′(1; λ̄p)
d log

(
yt+s|t

yt+s

)
.

Then, d
{
p̃txt,s + p̃txt,s

(G′)−1G′′

G′ −mct+s

}
is given by the following equation, where all G functions are

evaluated at (1; λ̄p):

ˆ̃pt + x̂t,s +
G′′

G′

[
ˆ̃pt + x̂t,s + d log

(
yt+s|t

yt+s

)
+
G′′′

G′′ d log

(
yt+s|t

yt+s

)
+
G′′
λ

G′′ λ̄
pλ̂pt+s −

G′′

G′ d log

(
yt+s|t

yt+s

)]
− m̄cm̂ct+s

=

[
1 +

G′′

G′

]
(ˆ̃pt + x̂t,s) +

G′′

G′

[
1 +

G′′′

G′′ − G′′

G′

]
d log

(
yt+s|t

yt+s

)
+
G′′

G′
G′′
λ

G′′ λ̄
pλ̂pt+s − m̄cm̂ct+s

=

[
1 +

G′′

G′ + 1 +
G′′′

G′′ − G′′

G′

]
(ˆ̃pt + x̂t,s) +

G′′
λ

G′ λ̄
pλ̂pt+s − m̄cm̂ct+s.
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Therefore, log-linearizing Equation (C.26) yields:

Et
∞∑
s=0

(ζpβ̃γ)
s

{(
2 +

G′′′

G′′

)
(ˆ̃pt + x̂t,s)− m̄cm̂ct+s +

G′′
λ

G′ λ̄
pλ̂pt+s

}
= 0. (C.87)

Similar to the previous derivation,

∞∑
s=0

(ζpβ̃γ)
sx̂t,s =

∞∑
s=1

(ζpβ̃γ)
s[(π̂t + . . . π̂t+s−1)ιp − (π̂t+1 + . . . π̂t+s)] =

∞∑
s=0

(ζpβ̃γ)
s+1

1− ζpβ̃γ
(ιpπ̂t+s − π̂t+s+1).

Then,

0 = Et
∞∑
s=0

(ζpβ̃γ)
s

{(
2 +

G′′′

G′′

)[
ˆ̃pt +

ζpβ̃γ

1− ζpβ̃γ
(ιpπ̂t+s − π̂t+s+1)

]
− m̄cm̂ct+s +

G′′
λ

G′ λ̄
pλ̂pt+s

}

⇒ 0 =
1

1− ζpβ̃γ

(
2 +

G′′′

G′′

)
ˆ̃pt + Et

∞∑
s=0

(ζpβ̃γ)
sFt+s,

where Ft+s =
{(

2 + G′′′

G′′

)
ζpβ̃γ

1−ζpβ̃γ
(ιpπ̂t+s − π̂t+s+1)− m̄cm̂ct+s +

G′′
λ

G′ λ̄
pλ̂pt+s

}
. Because 0 = 1

1−ζpβ̃γ

(
2 + G′′′

G′′

)
ˆ̃pt+1+

Et+1

∑∞
s=0(ζpβ̃γ)

sFt+1+s, we have:

0 =
ζpβ̃γ

1− ζpβ̃γ

(
2 +

G′′′

G′′

)
Et[ ˆ̃pt+1] + Et

∞∑
s=1

(ζpβ̃γ)
sFt+s.

By comparing the above equations, we obtain:

1

1− ζpβ̃γ

(
2 +

G′′′

G′′

)
ˆ̃pt + Ft =

ζpβ̃γ

1− ζpβ̃γ

(
2 +

G′′′

G′′

)
Et[ ˆ̃pt+1].

Because G′(1;λ̄p)

G′′(1;λ̄p)
= − 1+λ̄p

λ̄p
, m̄c = 1 + G′′

G′ . Using this fact and Equation (C.86), with some algebra and a
proper normalization of λ̂pt , we can show that:

π̂t =
ιp

1 + β̃γιp
π̂t−1 +

β̃γ

1 + β̃γιp
Et[π̂t+1] +

A(1− ζpβ̃γ)(1− ζp)

ζp(1 + β̃γιp)
m̂ct + λ̂pt , (C.88)

where A = 1+G′′/G′

2+G′′′/G′′ =
1

1+λ̄pθp
for θp being the curvature of the Kimball aggregator G. For illustration,

consider a generic Kimball aggregator such that pτ = G′(y;λ). Because y = (G′)−1(pτ ;λ), we compute the
elasticity of y with respect to p as follows:

ϵ(y;λ) = −∂ log y
∂ log p

= − pτ

(G′)−1G′′ = − G′(y;λ)

yG′′(y;λ)
.
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Then, we define the curvature parameter θp as follows:

θp = − ∂ϵ

∂y
|y=1,λ=λ̄

= − ∂ϵ

∂ log ϵ

∂ log ϵ

∂ log y

∂ log y

∂y
|y=1,λ=λ̄

= −ϵ(1; λ̄)
(
G′′(1; λ̄)

G′(1; λ̄)
− 1− G′′′(1; λ̄)

G′′(1; λ̄)

)
= 1 + ϵ(1; λ̄) + ϵ(1; λ̄)

G′′′(1; λ̄)

G′′(1; λ̄)
.

Because 1 +G′′/G′ = 1− 1/ϵ(1; λ̄) and 2 +G′′′/G′′ = 1 + (θp − 1)/ϵ(1; λ̄),

A =
1 +G′′/G′

2 +G′′′/G′′ =
1− 1/ϵ(1; λ̄)

1 + (θp − 1)/ϵ(1; λ̄)
=

1

1 + θp
1

ϵ(1;λ̄)−1

=
1

1 + λ̄pθp
.

C.3.2 Derivation of the New Keynesian wage Philips curve

The derivation of the wage Phillips curve is similar to the price Phillips curve. We start from the aggregation
equation (C.29) and then log-linearize Equation (C.28).

Because τ̂L,t = 0 and G′
L(1; λ̄

w) = τ̄L, we can obtain:

d log

[
(G′

L)
−1

(
w̃t−sx

w
t−s,s

wt
τL,t;λ

w
t

)]
= d log

(
lt|t−s

lt

)
=
G′
L(1; λ̄

w)

G′′
L(1; λ̄

w)
( ˆ̃wt−s + x̂wt−s,s − ŵt + τ̂L,t)

=
G′
L

G′′
L

( ˆ̃wt−s + x̂wt−s,s − ŵt)

for all s ≥ 0.
Then, Equation (C.29) yields:

ŵt = (1− ζw)

[
ˆ̃wt +

G′
L

G′′
L

( ˆ̃wt − ŵt)

]
+ ζw(1− ζw)

[
ˆ̃wt−1 + x̂wt−1,1 +

G′
L

G′′
L

( ˆ̃wt−1 + x̂wt−1,1 − ŵt)

]
+ . . .

= −G
′
L

G′′
L

ŵt +

∞∑
s=0

ζsw(1− ζw)

(
1 +

G′
L

G′′
L

)
ˆ̃wt−s +

∞∑
s=1

ζsw(1− ζw)

(
1 +

G′
L

G′′
L

)
x̂wt−s,s,

Furthermore,

∞∑
s=1

ζsw(1− ζw)x̂
w
t−s,s =

∞∑
s=1

ζsw(1− ζw) [(π̂t−s + . . .+ π̂t−1)ιw − (π̂t−s+1 + . . .+ π̂t)]

= ζw(ιwπ̂t−1 − π̂t) + ζ2p(ιwπ̂t−2 − π̂t−1) + . . .

=

∞∑
s=1

ζsw(ιwπ̂t−s − π̂t−s+1).
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Therefore,

ŵt =

∞∑
s=0

ζsw(1− ζw) ˆ̃wt−s +

∞∑
s=1

ζsw(1− ζw)x̂
w
t−s,s

=

∞∑
s=0

ζsw(1− ζw) ˆ̃wt−s +

∞∑
s=1

ζsw(ιwπ̂t−s − π̂t−s+1)

= (1− ζw) ˆ̃wt + ζw(ιwπ̂t−1 − π̂t) + ζwŵt−1.

Finally, we obtain:

ˆ̃wt =
ζw

1− ζw
(π̂t − ιwπ̂t−1) +

1

1− ζw
(ŵt − ζwŵt−1). (C.89)

Next, we log-linearize Equation (C.28).

(C.28) ⇒ Et
∞∑
s=0

(ζwβ̃γ)
sξt+slt+s|t

1

(G′
L)

−1

G′
L

G′′
L

{
w̃tx

w
t,s

[
1 +

(G′
L)

−1G′′
L

G′
L

]
−mrst+s

}
= 0,

Furthermore,

d log

[
(G′

L)
−1

(
w̃tx

w
t,s

wt+s
τL,t+s;λ

w
t+s

)]
= d log

(
lt+s|t

lt+s

)
=
G′
L(1; λ̄

w)

G′′
L(1; λ̄

w)
( ˆ̃wt + x̂wt,s − ŵt+s + τ̂L,t+s)

=
G′
L(1; λ̄

w)

G′′
L(1; λ̄

w)
( ˆ̃wt + x̂wt,s − ŵt+s),

d logG′′
L(
lt+s|t

lt+s
;λwt+s) =

G′′′
L (1; λ̄

w)

G′′
L(1; λ̄

w)
d log

(
lt+s|t

lt+s

)
+
G′′
L,λ(1; λ̄

w)

G′′
L(1; λ̄

w)
λ̄wλ̂wt+s,

d logG′
L(
lt+s|t

lt+s
;λwt+s) =

G′′
L(1; λ̄

w)

G′
L(1; λ̄

w)
d log

(
lt+s|t

lt+s

)
+
G′
L,λ(1; λ̄

w)

G′
L(1; λ̄

w)
λ̄wλ̂wt+s =

G′′
L(1; λ̄

w)

G′
L(1; λ̄

w)
d log

(
lt+s|t

lt+s

)
.

Then, d
{
w̃tx

w
t,s

[
1 +

(G′
L)

−1G′′
L

G′
L

]
−mrst+s

}
/w̄ is given by the following equation, where all GL functions

are evaluated at (1; λ̄w):

ˆ̃wt + x̂wt,s +
G′′
L

G′
L

[
ˆ̃wt + x̂wt,s + d log

(
lt+s|t

lt+s

)
+
G′′′
L

G′′
L

d log

(
lt+s|t

lt+s

)
+
G′′
L,λ

G′′
L

λ̄wλ̂wt+s −
G′′
L

G′
L

d log

(
lt+s|t

lt+s

)]
− m̄rs

w̄
m̂rst+s

=

[
1 +

G′′
L

G′
L

]
( ˆ̃wt + x̂wt,s) +

G′′
L

G′
L

[
1 +

G′′′
L

G′′
L

− G′′
L

G′
L

]
d log

(
lt+s|t

lt+s

)
+
G′′
L,λ

G′
L

λ̄wλ̂wt+s −
1

1 + λ̄w
m̂rst+s

=

[
2 +

G′′′
L

G′′
L

]
( ˆ̃wt + x̂wt,s)−

[
1 +

G′′′
L

G′′
L

− G′′
L

G′
L

]
ŵt+s +

G′′
L,λ

G′
L

λ̄wλ̂wt+s −
1

1 + λ̄w
m̂rst+s.

Therefore, log-linearizing Equation (C.28) yields:

Et
∞∑
s=0

(ζwβ̃γ)
s

{(
2 +

G′′′
L

G′′
L

)
( ˆ̃wt + x̂wt,s)−

(
1 +

G′′′
L

G′′
L

− G′′
L

G′
L

)
ŵt+s −

1

1 + λ̄w
m̂rst+s +

G′′
L,λ

G′
L

λ̄wλ̂wt+s

}
= 0.

(C.90)
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Similar to the previous derivation,

∞∑
s=0

(ζwβ̃γ)
sx̂wt,s =

∞∑
s=1

(ζwβ̃γ)
s[(π̂t + . . . π̂t+s−1)ιw − (π̂t+1 + . . . π̂t+s)] =

∞∑
s=0

(ζwβ̃γ)
s+1

1− ζwβ̃γ
(ιwπ̂t+s − π̂t+s+1).

Then,

0 =
1

1− ζwβ̃γ

(
2 +

G′′′
L

G′′
L

)
ˆ̃wt + Et

∞∑
s=0

(ζwβ̃γ)
sFwt+s,

where Fwt+s =
{(

2 +
G′′′
L

G′′
L

)
ζwβ̃γ

1−ζwβ̃γ
(ιwπ̂t+s − π̂t+s+1)−

(
1 +

G′′′
L

G′′
L
− G′′

L

G′
L

)
ŵt+s − 1

1+λ̄w
m̂rst+s +

G′′
L,λ

G′
L
λ̄wλ̂wt+s

}
.

Because 0 = 1
1−ζwβ̃γ

(
2 +

G′′′
L

G′′
L

)
ˆ̃wt+1 + Et+1

∑∞
s=0(ζwβ̃γ)

sFwt+1+s, we have:

0 =
ζwβ̃γ

1− ζwβ̃γ

(
2 +

G′′′
L

G′′
L

)
Et[ ˆ̃wt+1] + Et

∞∑
s=1

(ζwβ̃γ)
sFwt+s.

By comparing the above equations, we obtain:

1

1− ζwβ̃γ

(
2 +

G′′′
L

G′′
L

)
ˆ̃wt + Fwt =

ζwβ̃γ

1− ζwβ̃γ

(
2 +

G′′′
L

G′′
L

)
Et[ ˆ̃wt+1].

Using Equation (C.89), with some algebra and a proper normalization of λ̂wt , we can show that:

ŵt −
1

1 + β̃γ
ŵt−1 −

β̃γ

1 + β̃γ
Et[ŵt+1] =

(1− ζwβ̃γ)(1− ζw)

ζw(1 + β̃γ)
AL(m̂rst − ŵt)

−1 + β̃γιw

1 + β̃γ
π̂t +

ιw

1 + β̃γ
π̂t−1 +

β̃γ

1 + β̃γ
Et[π̂t+1] + λ̂wt , (C.91)

where m̂rst = 1
1−h/γ ĉt −

h/γ
1−h/γ ĉt−1 + σl l̂t, and AL =

1+G′′
L/G

′
L

2+G′′′
L /G

′′
L
= 1

1+λ̄wθw
for θw being the curvature of

the Kimball aggregator GL. Alternatively, we can express the wage Phillips curve in terms of the nominal
wage inflation: πwt ≡ log

(
ptwt

pt−1wt−1

)
= πt + ŵt − ŵt−1.

πwt = β̃γEt[πwt+1] +
(1− ζwβ̃γ)(1− ζw)

ζw
AL(m̂rst − ŵt)− ιw(β̃γπ̂t − π̂t−1) + (1 + β̃γ)λ̂wt . (C.92)

C.3.3 Economy with flexible prices, flexible wages, and no markup shocks

In this section, we consider the model economy with flexible prices, flexible wages, and no price and wage
markup shocks. As is the case for yGDP∗

t , we use ∗ to denote the variables in this economy.
When prices are flexible (ζp = 0), Equation (C.86) implies that ˆ̃p∗t = 0. Furthermore, we obtain the

following result from Equation (C.87):(
2 +

G′′′

G′′

)
(ˆ̃p∗t + x̂∗t,0)− m̄cm̂c∗t +

G′′
λ

G′ λ̄
pλ̂p∗t = 0 ⇒ m̂c∗t = 0,
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because λ̂p∗t = 0. Thus, we have:

0 = βkr̂
k∗
t + βlŵ

∗
t + βep̂

e∗
t − βel(ê

∗
t + l̂∗t )− εat . (C.93)

Similarly, when wages are flexible (ζw = 0), Equation (C.89) implies that ˆ̃w∗
t = ŵ∗

t . Furthermore, we
obtain the following result from Equation (C.90):(

2 +
G′′′
L

G′′
L

)
( ˆ̃w∗

t + x̂w∗
t,0 )−

(
1 +

G′′′
L

G′′
L

− G′′
L

G′
L

)
ŵ∗
t −

1

1 + λ̄w
m̂rs∗t +

G′′
L,λ

G′
L

λ̄wλ̂w∗
t = 0

⇒
(
1 +

G′′
L

G′
L

)
ŵ∗
t =

1

1 + λ̄w
m̂rs∗t

because λ̂w∗
t = 0. Because 1 +

G′′
L

G′
L
= 1

1+λ̄w
, we have:

ŵ∗
t =

1

1− h/γ
ĉ∗t −

h/γ

1− h/γ
ĉ∗t−1 + σl l̂

∗
t . (C.94)

In this economy, the monetary policy rule (C.79) is not necessary. Furthermore, the real interest rate
r̂∗t = r̂t−Et[π̂t+1] is directly determined. Therefore, the log-linearized equilibrium conditions are as follows:
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(C.71) ⇒ ĉ∗t =
1

1 + h/γ
Et[ĉ∗t+1] +

h/γ

1 + h/γ
ĉ∗t−1 −

1− h/γ

σc(1 + h/γ)
r̂∗t

− m̄rs× l̄

c̄

σc − 1

σc(1 + h/γ)

(
Et[l̂∗t+1]− l̂∗t

)
+ ε̂bt , (C.95)

(C.72) ⇒ k̂s∗t + r̂k∗t = ŵ∗
t + l̂∗t −

βel
βl
ê∗t , (C.96)

(C.72) ⇒ ê∗t + p̂e∗t = k̂s∗t + r̂k∗t +
βel
βe
l̂∗t , (C.97)

(C.74) ⇒ Ẑ∗
t =

1− ψ

ψ
r̂k∗t , (C.98)

(C.75) ⇒ k̂∗t =
1− δ

γ
k̂∗t−1 +

(
1− 1− δ

γ

)
î∗t +

(
1− 1− δ

γ

)
(1 + β̃γ)φγ2ε̂it, (C.99)

(C.37) ⇒ Ẑ∗
t = k̂s∗t − k̂∗t−1, (C.100)

(C.77) ⇒ î∗t =
1

1 + β̃γ
î∗t−1 +

β̃γ

1 + β̃γ
Et [̂i∗t+1] +

1

(1 + β̃γ)φγ2
Q̂∗
t + ε̂it, (C.101)

(C.78) ⇒ Q̂∗
t = −r̂∗t + β̃r̄kEt[r̂k∗t+1] + β̃(1− δ)Et[Q̂∗

t+1] +
σc(1 + h/γ)

1− h/γ
ε̂bt , (C.102)

(C.80) ⇒ ŷ∗t = Φ(βkk̂
s∗
t + βl l̂

∗
t + βeê

∗
t + εat ), (C.103)

(C.81) ⇒ c̄

ȳGDP
ĉ∗t +

ī

ȳGDP
î∗t + ĝt +

r̄kk̄s

ȳGDP
Ẑ∗
t = ŷGDP∗

t , (C.104)

(C.82) ⇒ ŷGDP∗
t =

ȳ

ȳGDP

{
ŷ∗t −

[(
βe −

βeϕe
se

)
p̂e∗t + βeê

∗
t −

βeϕe
se

ês∗t

]}
, (C.105)

(C.83) ⇒ seê
∗
t + (1− se)ê

d∗
t = ês∗t , (C.106)

(C.84) ⇒ ês∗t = κsp̂
e∗
t + εest , (C.107)

(C.85) ⇒ êd∗t = ρey ŷ
GDP∗
t−1 + ρerr r̂

∗
t−1 − κdp̂

e∗
t + εedt . (C.108)

C.3.4 Exogenous processes

There are nine exogenous processes in this model. εb, εi, g, λp, and λw shocks are normalized as previously
discussed.

Technology:
εat = ρaε

a
t−1 + ηat , η

a
t ∼ N(0, σ2

a). (C.109)

Intertemporal preference shifter (financial risk premium process):

ε̂bt = ρbε̂
b
t−1 + ηbt , η

b
t ∼ N(0, σ2

b ). (C.110)

Government spending:

ĝt = ρg ĝt−1 + ηgt + µgaη
a
t , η

g
t ∼ N(0, σ2

g). (C.111)
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Investment-specific productivity:

ε̂it = ρiε̂
i
t−1 + ηit, η

i
t ∼ N(0, σ2

i ). (C.112)

Monetary policy:
εrt = ρrε

r
t−1 + ηrt , η

r
t ∼ N(0, σ2

r). (C.113)

Price mark-up process:

λ̂pt = ρpλ̂
p
t−1 − µpη

p
t−1 + ηpt , η

p
t ∼ N(0, σ2

p). (C.114)

Wage mark-up process:

λ̂wt = ρwλ̂
w
t−1 − µwη

w
t−1 + ηwt , η

w
t ∼ N(0, σ2

w). (C.115)

Energy demand:
εedt = ρedε

ed
t−1 + ηdt , η

d
t ∼ N(0, σ2

ed). (C.116)

Energy supply:
εest = ρesε

es
t−1 + ηst , η

s
t ∼ N(0, σ2

es). (C.117)

C.4 Summary

The equilibrium is defined as a sequence of 34 endogenous variables:{
ŷt, ĉt, ît, k̂t, k̂

s
t , Ẑt, Q̂t, r̂

k
t , l̂t, ŵt, m̂ct, π̂t, r̂t, êt, p̂

e
t , ŷ

GDP
t , êdt , ê

s
t ,

ŷ∗t , ĉ
∗
t , î

∗
t , k̂

∗
t , k̂

s∗
t , Ẑ

∗
t , Q̂

∗
t , r̂

k∗
t , l̂

∗
t , ŵ

∗
t , r̂

∗
t , ê

∗
t , p̂

e∗
t , ŷ

GDP∗
t , êd∗t , ê

s∗
t

}
and 9 exogenous variables: {

εat , ε̂
b
t , ĝt, ε̂

i
t, ε

r
t , λ̂

p
t , λ̂

w
t , ε

es
t , ε

ed
t

}
,

satisfying Equations (C.70), (C.71), (C.72), (C.73), (C.74), (C.75), (C.76), (C.77), (C.78), (C.79), (C.80),
(C.81), (C.82), (C.83), (C.84), (C.85), (C.88), (C.91), (C.93), (C.94), (C.95), (C.96), (C.97), (C.98), (C.99),
(C.100), (C.101), (C.102), (C.103), (C.104), (C.105), (C.106), (C.107), (C.108), (C.109), (C.110), (C.111),
(C.112), (C.113), (C.114), (C.115), (C.116), and (C.117) for all t.

C.5 Aggregation of the Firm-level Production Function

Suppose that Xt is an aggregate quantity of firm-level variable Xt(i) such that Xt =
∫
Xt(i)di. We denote

the logarithm of Xt and Xt(i) by xt and xt(i), respectively.

Lemma. xt =
∫
xt(i) di up to the first order.

Proof. We closely follow the discussion in Galí (2015, Appendix 3.4).
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Let Ei{xt(i)} be
∫
xt(i) di. Similarly, we define vari{xt(i)} as

∫
(xt(i)− Ei{xt(i)})2 di.

From the definition of Xt,

1 =

∫
Xt(i)

Xt
di =

∫
exp(xt(i)− xt) di

≈ 1 +

∫
(xt(i)− xt) di+

1

2

∫
(xt(i)− xt)

2 di,

where the last line is based on the second-order Taylor expansion. Thus, we have:

xt ≈ Ei{xt(i)}+
1

2

∫
(xt(i)− xt)

2 di

up to the second order.
It remains to show that At ≡

∫
(xt(i)− xt)

2 di is of the second order. The above equation implies
that Ei{xt(i)} − xt ≈ − 1

2At up to the second order. Thus,

At =

∫
(xt(i)− Ei{xt(i)}+ Ei{xt(i)} − xt)

2 di

=

∫
(xt(i)− Ei{xt(i)})2 di+ 2

∫
(xt(i)− Ei{xt(i)})(Ei{xt(i)} − xt) di+ (Ei{xt(i)} − xt)

2

≈ vari{xt(i)} −At

∫
(xt(i)− Et{xt(i)}) di+

(
1

2
At

)2

= vari{xt(i)}+
(
1

2
At

)2

up to the second order. This result implies that:

At ≈ 2± 2
√

1− vari{xt(i)}

up to the second order. Because
√
1− vari{xt(i)} ≈ 1− vari{xt(i)}

2 − [vari{xt(i)}]2
8 up to the second order,

At ≈ 2± 2
√
1− vari{xt(i)}

≈ 2± 2

(
1− vari{xt(i)}

2
− [vari{xt(i)}]2

8

)
.

We know that At > 0. Thus, we obtain:

At ≈ 2− 2

(
1− vari{xt(i)}

2
− [vari{xt(i)}]2

8

)
≈ vari{xt(i)}

up to the second order. Because vari{xt(i)} is of the second order, the proof is complete.
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Consider the firm-level production function (3.1). This implies that:

log(yt(i) + υ) = εat + βk log(k
s
t (i)) + βl log(lt(i)) + βe log(et(i)) + βelêt l̂t(i) + βelêt(i)l̂t.

For the Kimball aggregator, it is well-known that yt ≈
∫
yt(i) di up to the first order (Smets and Wouters,

2007). Thus, by repeatedly applying the above lemma, we have:

log(yt + υ) ≈ log

(∫
yt(i) di+ υ

)
≈
∫

log(yt(i) + υ) di

≈ εat + βk log k
s
t + βl log lt + βe log et + βelêt

[∫
log(lt(i)) di− log l̄

]
+ βel

[∫
log et(i) di− log ē

]
l̂t

≈ εat + βk log k
s
t + βl log lt + βe log et + βelêt log

(
lt
l̄

)
+ βel log

(et
ē

)
l̂t

= εat + βk log k
s
t + βl log lt + βe log et + 2βel l̂têt,

where all the approximation is up to the first order. By taking the exponential, we recover the aggregate
translog production function that mirrors the firm-level production function up to the first order.

yt ≈ exp(εat )[k
s
t ]
βk [lt]

βl [et]
βe

(
lt
l̄

)βel log(et/ē) (et
ē

)βel log(lt/l̄)
− υ.

C.6 Properties of the Translog Production Function

In this section, we discuss in detail the properties of the translog production function that we propose. For
the clarity of exposition, we abstract away the fixed cost (i.e., v = 0) in Equation (3.1):

yt(i) = exp(εat )[k
s
t (i)]

βk [lt(i)]
βl [et(i)]

βe ×

[(
lt(i)

l̄

)βel log(et/ē)(et(i)
ē

)βel log(lt/l)]
. (C.118)

Equation (C.118) can be broken down into the short-run and long-run components, in which the short-run
component is expressed as the deviation from the long-run component (i.e., the steady state):

yt(i) = fSR
(
kst (i)

k̄s
,
lt(i)

l̄
,
et(i)

ē
, εat ; Ωt

)
︸ ︷︷ ︸

=yt(i)/ȳ

× fLR
(
k̄s, l̄, ē; Ω

)︸ ︷︷ ︸
=ȳ

,
(C.119)
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where

fSR
(
kst (i)

k̄s
,
lt(i)

l̄
,
et(i)

ē
, εat ; Ωt

)
≡ exp(εat )

(
kst (i)

k̄s

)βk ( lt(i)
l̄

)βl+βel log(et/ē)(et(i)
ē

)βe+βel log(lt/l̄)
,

fLR(k̄s, l̄, ē; Ω) ≡
(
k̄s
)βk (l̄)βl (ē)βe ,

(C.120)

Ωt ≡ [βk, βl + βel log(et/ē), βe + βel log(lt/l̄)]
′,

Ω ≡ [βk, βl, βe]
′.

(C.121)

A similar decomposition can be found in Cantore et al. (2015) and Koh and Santaeulàlia-Llopis (2017) in
the context of the CES production function in an attempt to resolve dimensionality issues (see Cantore and
Levine, 2012).2 Here, lt and et indicate the cross-sectional average of lt(i) and et(i), respectively, which
individual firms take as a given.

In the above expression, Ωt is a vector of endogenous parameters that govern potentially time-varying
short-run returns to scale in the economy. We write “endogenous” parameters because the time-varying
components are endogenously determined in equilibrium, although individual firms take these values as
given.3 Ω is a vector of strictly exogenous parameters that govern the time-invariant and constant long-run
returns to scale of the economy. When we evaluate Ωt at the steady-state or on the long-run horizon, we
have Ω = Ω.

The proposed translog production function has the following properties.

1. The bracketed term on the right-hand side of (C.118),
[(

lt(i)

l̄

)βel log(et/ē) ( et(i)
ē

)βel log(lt/l)]
, consists

of the variables normalized by their steady-state values. This makes the production function collapse
into the conventional Cobb-Douglas at the steady state.

There are three advantages of normalization. First, it resolves the dimensionality issue discussed in De
Jong (1967), Cantore and Levine (2012) and Cantore et al. (2014); that is, the normalization makes βel
independent of the choice of units. To illustrate this point, note that under the normalization, the labor
and energy input shares are given by wtlt

yt
= λ [βl + βel log (et/ē)] and petet

yt
= λ

[
βe + βel log

(
lt/l̄
)]

,
respectively, where λ is the wedge between the marginal product of inputs and real input prices. From
this expression, we can see that the parameter βel is dimensionless because the inputs that appear on
the right-hand sides are normalized by their steady-state counterparts (i.e., etē and lt

l̄
), which do not

depend on the choice of units. In contrast, if we do not normalize the production function, the labor
and energy input shares become wtlt

yt
= λ [βl + βel log et] and petet

yt
= λ [βe + βel log lt], respectively.

2As discussed in De Jong (1967), Cantore and Levine (2012) and Cantore et al. (2014), such a distinction between
short- and long-run production functions (or normalization) was implemented to address what is called the dimensionality
issue: under CES technology, factor share parameters no longer directly measure the “share” but depend on the underlying
“dimensions.” This makes such parameters depend on the choice of units, which creates measurement problems in calibration
and estimation. Expressing the production function in deviation from the steady state eliminates the dimensional parameters
and resolves the issue. As discussed below, our normalization also makes the translog parameters under our production
function no longer depend on the choice of units.

3Because the time-varying components in Ωt are endogenously determined in equilibrium, the terminology “parameter”
can be somewhat misleading. Still, we call it an endogenous parameter because it characterizes the returns to scale of the
economy that individual firms take as exogenous. The long-run value of Ωt, Ω, is a vector of strictly exogenous parameters
because it consists only of deep structural parameters.

OA-42



In this case, since the input shares are dimensionless, βel depends on the unit of inputs (et and lt).

Second, it makes the model compatible with the balanced-growth path.4 In this way, the input
complementarity that we introduce (and the resulting procyclical returns to scale) is a short-run
characteristic, which does not affect the long-run growth of the economy.

Finally, the normalization facilitates comparison with the model without complementarity-induced
procyclical returns to scale because the steady state is identical across the two models.

2. At the aggregate level, the short-run component fSR has the translog expression:

log

(
yt
ȳ

)
= εat + βk log

(
kst
k̄s

)
+ βl log

(
lt
l̄

)
+ βe log

(et
ē

)
+ 2βel log

(
lt
l̄

)
log
(et
ē

)
3. The complementarity between energy and labor is reflected by a single parameter βel. If βel > 0, our

model features complementarity-induced procyclical returns to scale in the short run, provided that
the dynamics of log(et/ē) and log(lt/l̄) are procyclical.

4. Despite procyclical returns to scale, the production function becomes scale-free up to the first
order because log-linearizing the production function yields a form exactly identical to the log-
linearized Cobb-Douglas production function. To see this, consider the first-order approximation of
the production function at the aggregate level:

ŷt = εat + βkk̂
s
t + βl l̂t + βeêt,

where x̂t ≡ log xt
x̄ for an arbitrary variable x.

Therefore, the procyclicality of returns to scale does not generate any additional output fluctuation
by itself because our production function behaves exactly the same as the conventional Cobb-Douglas
up to the first order. All interesting dynamics arise through the first-order condition of the firm. This
scale-free characteristic up to the first order is one feature that distinguishes our model from the
conventional increasing returns to scale models. In the increasing returns to scale models, both the
production function and the first-order conditions are affected by the increasing returns up to the
first order. In contrast, only the first-order conditions are affected by the procyclical returns to scale
in our model.

5. The short- and long-run returns to scale at the individual firm level are given by

Short-Run Returns to Scale (rtst) = βk + βl + βe + βel
[
log(et/ē) + log(lt/l̄)

]
Long-Run Returns to Scale (rts) = βk + βl + βe

(C.122)

Since individual firms take the cross-sectional average variables et and lt as given and do not internalize
their changes, each individual firm takes the returns to scale as given.

4Our medium-scale DSGE model features the balanced-growth path.
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This assumption guarantees that firms’ optimizing behavior is well-characterized by the first-order
conditions. Suppose individual firms can internalize the change in returns to scale of the economy.
In that case, by choosing a larger amount of labor and energy inputs, firms can make their returns
to scale arbitrarily large. This would induce firms to choose an infinite amount of labor and energy
inputs. This issue no longer arises when individual firms do not internalize the change in returns to
scale.5

5This assumption makes our model similar to the internal increasing returns to scale (IRS) model (Benhabib and Farmer
1994; Schmitt-Grohé 2000). In contrast to an external IRS model in which individual firms take the production externalities
as given and, therefore, effectively face constant returns to scale, firms in the internal IRS model take the returns to scale
parameter (which is larger than one) as given and therefore face increasing returns to scale. In our model, individual firms do
not internalize the change in returns to scale, and firms take as given the time-varying returns to scale determined at the
aggregate level.
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Appendix D Supplementary Materials for Section 3

D.1 Data Used in Section 3

We extend the data constructed in Smets and Wouters (2007) to later periods for standard macroeconomic
variables. We replace the federal funds rate with the shadow rate of Wu and Xia (2016) from 2009:q1 to
2015:q4 in view of the binding zero lower bound. For the global energy quantity Est , we obtain a time series of
total world primary energy consumption from BP Energy (2020). For the energy price, P et , a producer price
index for total energy for the US is used. This variable, PIEAEN01USM661N, is downloaded from FRED.
We employ data for the US industrial energy usage, Et, from U.S. Energy Information Administration
(2021).

Our sample period is from 1966:q1 to 2019:q4. During the sample period, the Est and Et series
are available only at the annual frequency.6 Therefore, when needed, we interpolate an annual series to
construct a quarterly measure. We rely on cubic splines for this purpose. Let f(t) be log(Est /4). We
can observe f at each integer t. We use a cubic spline to interpolate f at non-integer points and treat
f(−0.375), f(−0.125), f(0.125), and f(0.375) as the logarithm of quarterly Est in year 0.

Finally, we remove the seasonal variation using X-13 ARIMA.

D.2 Preliminary Regression Analysis for the Energy Market Equations

Table D.1 shows the prior distributions of the newly introduced parameters relative to the original Smets
and Wouters (2007) model.

Table D.1: Prior distributions

Parameter Mean Std. Family Meaning
βe 0.05 0.02 Gamma Production function
βel 0.5 1/

√
12 Uniform Complementarity in production

ρey 1 0.8 Gamma Global energy demand and the US output
ρerr 1 0.8 Gamma Global energy demand and the US financial market
κd 0.1 0.08 Gamma Price elasticity of the global energy demand
κs 0.1 0.08 Gamma Price elasticity of the global energy supply
σed 1 2 Inv. Gamma Std. of energy demand shocks
σes 1 2 Inv. Gamma Std. of energy supply shocks
ρed 0.5 0.25 Beta AR(1) coefficient of global demand shocks
ρes 0.5 0.25 Beta AR(1) coefficient of global supply shocks
p̄e 0 2 Normal Average p̂et in the measurement equation
σν 0.1 0.1 Inv. Gamma Std. of measurement errors
ϕe 0.0265 0.0094 Normal Global share of the US energy production

Among the new parameters, this section focuses on the priors of κd, κs, ρey, and ρerr. We rely on
preliminary regression analysis to set priors of these elasticities in the global energy demand and supply
equations. Note that we restrain ourselves from using the regression results to set priors of the energy
shock process parameters (ρed, ρes, σed. σes). This approach allows us to minimize potential complications

6Monthly data for Et is available from 1973.
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due to using the energy data twice: when constructing the priors and when formally conducting Bayesian
estimations in Section 3.2. The remaining parameters will be discussed in Appendix D.3.

We obtain the following results by estimating logEst = c+ dt+ κs log pet + εest using 2SLS:

l̂ogEst = ĉ+ d̂t+ 0.119 log pet , when yt−1 and rt−1 − Et−1[πt] are used as IVs.

(0.052)

l̂ogEst = ĉ+ d̂t+ 0.009 log pet , when rrt−3, . . . , rrt−10 are used as IVs,

(0.055)

where rrt is the Romer and Romer (2004) monetary policy shock, updated by Coibion et al. (2017).
The HAR standard errors are reported in parentheses. Similarly, when we estimate logEdt = c + dt +

ρey log(Y
GDP
t−1 ) + ρerr(rt−1 − Et−1[πt]) + κd log pet + εedt using rrt−3, . . . , rrt−10 as IVs, we have:

l̂ogEdt = ĉ+ d̂t+ 0.733 log(Y GDPt−1 ) + 1.245(rt−1 − Et−1[πt]) + 0.105 log pet .

(0.419) (1.921) (0.066)

Based on these preliminary regression results, we assume loose priors of ρey, ρerr, κd, and κs with
rather large standard deviations as shown in Table D.1.

D.3 Prior and Posterior Distributions

This section illustrates the priors of the new parameters, except for the elasticities in the energy equations
discussed above. We also show the posterior mode and the credible interval of all parameters in the three
models: HKL, HKL-CD, and S&W.

We begin with the priors. The energy shares of value-added are 10% in Backus and Crucini (2000),
5.17% in Dhawan and Jeske (2008), 4.3% in Finn (2000), and 4% in Rotemberg and Woodford (1996). We
assume that βe has a Gamma distribution with mean 5% and standard deviation 2%.

To facilitate the comparison between the aggregate estimate of the input complementarity parameter
βel and the micro estimate of δel in Section 2 (Table 1), we use an uninformative prior of βel. Specifically,
βel is assumed to have a standard uniform distribution between 0 and 1.

For the AR(1) coefficients in the energy demand and supply shock processes, we assume Beta priors
with a mean of 0.5 and a standard deviation of 0.25. The standard deviations of shocks have an inverse
Gamma prior with a mean of 1 and a standard deviation of 2. In light of large fluctuations in energy prices
in data, we set a larger mean of σes and σed than the other structural shocks in the model. However, we
also make the priors substantially loose by assuming sufficiently large standard deviations.

We demean log(pet ) in our observation equation. Therefore, we assume that p̄e has a normal distribution
with mean zero and standard deviation two. This choice is similar to the prior distribution of l̄ in Smets
and Wouters (2007).

The measurement error νt is introduced to the observation of Est because lENERGYt = log(Est ) is
interpolated based on an annual series. We assume that νt ∼ iidN(0, σ2

ν) and that the prior mean and
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standard deviation of σν are 0.1 and 0.1, respectively.
Because se = ē

ēs is not separately identifiable from other parameters, we fix it at 0.0708, which is the
sample average of Et/Est in the data between 1966 and 2019. To investigate the global share of the US
energy production, ϕe, we turn to the US net import of energy. In our model, the US net energy import,
ENI , is given by E −Esϕe. Thus, ϕe =

Et−Enit
Est

. We use the sample average of this ratio during the sample
period and its standard errors as the prior mean and standard deviation of ϕe, respectively.

We fix the following parameters that are also used in the original Smets and Wouters (2007) model.

δ = 0.025, Φw = 1 + λ̄w = 1.5, exp(ḡ) =
G

Y GDP
= 0.18,

θp = 10, θw = 10.

Next, we show the full list of parameters and their prior and posterior distributions. We start with
parameters common to our model and the Smets and Wouters (2007) model. Then, we present the results
for the newly introduced parameters regarding the energy market and the production function. We consider
three models: our benchmark, our model without complementarity between labor and energy, and the
original Smets and Wouters model without energy inputs. We employ a standard Markov chain Monte
Carlo technique to obtain the posterior distribution. Specifically, we use a random walk Metropolis-Hastings
algorithm with a chain length of 500,000. The acceptance rates for the three models are 27%, 31%, and
28%, respectively. The chain starts at the posterior mode computed using interior-point methods. We use
the inverse of numerical hessian at the mode as a variance of the jump distribution in our algorithm. The
step sizes are adjusted to obtain reasonable acceptance rates.

OA-47



Table D.2: Parameters in S&W

Parameter Priors HKL HKL-CD S&W
Mean Std. Family Mode (5%, 95%) Mode (5%, 95%) Mode (5%, 95%)

φ 4 1.5 Normal 3.90 (2.79, 6.12) 3.73 (2.81, 6.17) 3.59 (2.88, 6.20)
σc 1.5 0.375 Normal 1.40 (1.04, 1.86) 1.65 (1.15, 2.00) 1.67 (1.18, 1.98)
h 0.7 0.1 Beta 0.49 (0.41, 0.62) 0.43 (0.37, 0.60) 0.43 (0.38, 0.61)
ξw 0.5 0.1 Beta 0.83 (0.75, 0.89) 0.79 (0.69, 0.86) 0.79 (0.67, 0.85)
σl 2 0.75 Normal 1.97 (1.14, 3.00) 1.25 (0.68, 2.30) 1.35 (0.64, 2.35)
ξp 0.5 0.1 Beta 0.82 (0.77, 0.87) 0.78 (0.74, 0.88) 0.77 (0.70, 0.85)
ιw 0.5 0.15 Beta 0.64 (0.39, 0.81) 0.65 (0.37, 0.79) 0.65 (0.39, 0.81)
ιp 0.5 0.15 Beta 0.24 (0.13, 0.38) 0.28 (0.13, 0.41) 0.28 (0.14, 0.42)
ψ 0.5 0.15 Beta 0.80 (0.64, 0.90) 0.78 (0.61, 0.89) 0.80 (0.64, 0.90)
Φ 1.25 0.125 Normal 1.44 (1.33, 1.57) 1.48 (1.36, 1.60) 1.49 (1.39, 1.64)
rπ 1.5 0.25 Normal 1.90 (1.64, 2.17) 1.99 (1.70, 2.21) 2.01 (1.75, 2.27)
ρ 0.75 0.1 Beta 0.84 (0.81, 0.87) 0.83 (0.80, 0.87) 0.83 (0.79, 0.86)
ry 0.125 0.05 Normal 0.11 (0.07, 0.16) 0.09 (0.06, 0.14) 0.08 (0.05, 0.12)
r∆y 0.125 0.05 Normal 0.25 (0.21, 0.30) 0.25 (0.22, 0.30) 0.25 (0.22, 0.30)
π̄ 0.625 0.1 Gamma 0.71 (0.58, 0.86) 0.70 (0.58, 0.86) 0.74 (0.61, 0.91)

100(β−1 − 1) 0.25 0.1 Gamma 0.21 (0.11, 0.44) 0.20 (0.11, 0.42) 0.21 (0.12, 0.44)
l̄ 0 2 Normal -0.27 (-0.59, -0.01) -0.36 (-0.59, -0.05) -0.30 (-0.49, -0.01)
γ̄ 0.4 0.1 Normal 0.42 (0.40, 0.47) 0.41 (0.39, 0.44) 0.38 (0.35, 0.41)
βk 0.3 0.05 Normal 0.18 (0.15, 0.21) 0.18 (0.15, 0.21) 0.18 (0.16, 0.22)
σa 0.1 2 Inv. Gamma 0.46 (0.42, 0.51) 0.45 (0.42, 0.50) 0.45 (0.42, 0.50)
σb 0.1 2 Inv. Gamma 0.10 (0.08, 0.12) 0.09 (0.08, 0.13) 0.09 (0.08, 0.14)
σg 0.1 2 Inv. Gamma 0.47 (0.44, 0.51) 0.47 (0.43, 0.51) 0.46 (0.43, 0.51)
σI 0.1 2 Inv. Gamma 0.35 (0.30, 0.43) 0.35 (0.30, 0.42) 0.36 (0.30, 0.42)
σr 0.1 2 Inv. Gamma 0.22 (0.21, 0.25) 0.22 (0.21, 0.25) 0.22 (0.21, 0.25)
σp 0.1 2 Inv. Gamma 0.13 (0.11, 0.15) 0.13 (0.11, 0.15) 0.13 (0.11, 0.15)
σw 0.1 2 Inv. Gamma 0.36 (0.32, 0.39) 0.37 (0.32, 0.40) 0.37 (0.33, 0.40)
ρa 0.5 0.2 Beta 0.98 (0.96, 0.99) 0.98 (0.96, 0.99) 0.98 (0.96, 0.99)
ρb 0.5 0.2 Beta 0.86 (0.76, 0.90) 0.86 (0.72, 0.90) 0.85 (0.62, 0.88)
ρg 0.5 0.2 Beta 0.98 (0.97, 0.99) 0.98 (0.97, 0.99) 0.98 (0.96, 0.99)
ρI 0.5 0.2 Beta 0.81 (0.71, 0.92) 0.85 (0.75, 0.93) 0.87 (0.76, 0.92)
ρr 0.5 0.2 Beta 0.11 (0.06, 0.23) 0.11 (0.06, 0.23) 0.11 (0.07, 0.25)
ρp 0.5 0.2 Beta 0.89 (0.77, 0.93) 0.95 (0.80, 0.96) 0.94 (0.82, 0.97)
ρw 0.5 0.2 Beta 0.97 (0.89, 0.98) 0.98 (0.93, 0.98) 0.98 (0.94, 0.99)
µp 0.5 0.2 Beta 0.79 (0.58, 0.86) 0.87 (0.62, 0.89) 0.85 (0.64, 0.89)
µw 0.5 0.2 Beta 0.95 (0.86, 0.96) 0.96 (0.88, 0.96) 0.96 (0.90, 0.97)
ρga 0.5 0.25 Normal 0.52 (0.39, 0.63) 0.51 (0.39, 0.63) 0.52 (0.39, 0.63)

Table D.3: New parameters

Parameter Priors HKL HKL-CD
Mean Std. Family Mode (5%, 95%) Mode (5%, 95%)

βe 0.05 0.02 Gamma 0.012 (0.008, 0.019) 0.011 (0.007, 0.018)
βel 0.5 1/

√
12 Uniform 0.030 (0.008, 0.052) - -

ρey 1 0.8 Gamma 0.17 (0.07, 0.35) 0.24 (0.12, 0.37)
ρerr 1 0.8 Gamma 0.09 (0.03, 0.49) 0.10 (0.04, 0.46)
κd 0.1 0.08 Gamma 0.009 (0.003, 0.201) 0.009 (0.005, 0.086)
κs 0.1 0.08 Gamma 0.10 (0.04, 0.12) 0.10 (0.05, 0.11)
σed 1 2 Inv. Gamma 0.74 (0.69, 1.74) 0.75 (0.71, 1.14)
σes 1 2 Inv. Gamma 0.72 (0.52, 0.82) 0.72 (0.55, 0.80)
ρed 0.5 0.25 Beta 0.9997 (0.9968, 0.9998) 0.9997 (0.9997, 0.9998)
ρes 0.5 0.25 Beta 0.9996 (0.9973, 0.9999) 0.9996 (0.9996, 0.9996)
p̄e 0 2 Normal -0.12 (-3.35, 3.15) -0.01 (-3.21, 3.32)
σν 0.1 0.1 Inv. Gamma 0.05 (0.03, 0.19) 0.05 (0.04, 0.19)
ϕe 0.0265 0.0094 Normal 0.027 (0.012, 0.043) 0.027 (0.012, 0.042)
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D.4 Empirical and Model Responses of Labor and Energy to Demand Shocks

The dynamics of labor and energy and their complementarity are central to our mechanism for procyclical
returns to scale. In this section, we investigate the responses of labor and energy to structural shocks in
our model and data. We document that the model responses are reasonably close to the empirical impulse
responses for major demand shocks, such as monetary and fiscal policy shocks. This result holds although
we do not directly match the dynamics of US industrial energy input et in the Bayesian estimation in
Section 3.2.7

We consider the following identified monetary and fiscal policy shocks. For the monetary policy, we
use two series. The first shock series is constructed by Wieland and Yang (2020), extending the Romer
and Romer (2004) shocks to later periods. Because this series is available from 1969, our sample spans
from 1969:q1 to 2007:q4. We also estimate the responses of GDP, labor, and energy to high-frequency
monetary policy surprises around the FOMC meetings. Following Bauer and Swanson (2022), we use
the orthogonalized monetary policy surprises to purge predictable variations in the instrument. The
sample period for this exercise is from 1988:q1 to 2019:q4. For the government spending shocks, we follow
Auerbach and Gorodnichenko (2012) and use a surprise to growth rates of the federal spending relative to
its Greenbook forecasts. The sample period is from 1966:q4 to 2010:q3. Finally, the military spending news
shocks in Ramey and Zubairy (2018) are also considered. In this case, we use annual series and extend the
sample to earlier periods to utilize more variations in the instrument. As a result, we have the data from
1949 to 2015.

We employ the same US GDP and hours data as Section 3.2. We obtain the US industrial energy
usage data, Et, from U.S. Energy Information Administration (2021). Because this series is not available at
the quarterly frequency in the early part of the sample, we use the interpolated series from the annual data
when needed. See Appendix D.1 for details of this interpolation.

To estimate the impulse response function of labor to the identified structural shocks, we estimate
the following local projections à la Jordà (2005):

lt+h − lt−1 = ψhηt + Γ′
hcontrolt + error, (D.1)

where {ψ0, ψ1, . . .} constitutes an impulse response function of labor to the shock ηt, which can be either
monetary or fiscal policy shocks. We include a linear trend and four lagged values of ∆lt ≡ lt − lt−1 and ηt
as controls. For the inference, robust standard errors are estimated. Following Christiano et al. (1996),
Coibion (2012), Gorodnichenko and Lee (2020), and many others, the impact responses of GDP, labor, and
energy to the narratively-identified monetary policy shocks are restricted to zero. However, it is not imposed
in the case of high-frequency identification of monetary policy shocks. Also, corresponding restrictions are
not used for fiscal policy shocks.

For the model impulse responses, we compute the impulse responses at the posterior mode. We
further calculate 90% credible intervals at each horizon of the impulse response function.

Figure D.1 illustrates the results. The top two rows show the responses of GDP, hours, and energy to
a one-standard-deviation contractionary monetary policy shock. The first and second rows are based on

7We instead include the global energy supply est in the observation Equation (3.8).
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Figure D.1: Empirical and model impulse responses of GDP, labor hours, and energy to monetary and
fiscal policy shocks

the narratively-identified shocks and the high-frequency monetary policy surprises, respectively. All three
variables decrease in an (inverted) hump-shaped manner both in the model and the data. Furthermore, the
magnitude of the empirical and model responses is similar. For example, excluding the first few quarters, the
impulse responses at the posterior mode are included in the 90% confidence interval of the empirical impulse
responses. The bottom panels show similar results for a one-standard-deviation expansionary government
spending shock and military news shock.8 Although the confidence intervals of the empirical impulse
responses are wide, especially for the Auerbach and Gorodnichenko (2012) shock, the point estimates are
reasonably close to the model impulse responses at the posterior mode, excluding the first few quarters.
Furthermore, in the model without input complementarity in production (HKL-CD), the responses of

8For the military news shock, we plot the response of log(1− unemployment rate) as labor responses.
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energy to expansionary government spending shocks are negative, except for the impact response (not
shown). This result is because pet increases as yGDPt−1 increases and hence the energy demand edt decreases. In
our benchmark model, as labor increases, energy productivity increases because of input complementarity.
Therefore, although pet increases, energy responds positively. The results for the monetary policy shocks
are similar. In HKL-CD, a contractionary monetary policy shock leads to a positive response of energy,
except for the contemporaneous response.

Therefore, we conclude that the model responses of labor and energy, which constitute crucial parts
of our proposed mechanism in Section 3.3.1, are broadly consistent with the empirical evidence regarding
major demand shocks, such as monetary and fiscal policy shocks.

D.5 Forecast Error Variance Decompositions

This section presents the FEVDs at various horizons. In the main text, we show the result for 32 quarters.
As in Smets and Wouters (2007), we exhibit results for the horizons of 1, 2, 4, 10, 40, and 100 quarters. In
all tables, panel A decomposes the forecast error variances into the contributions of the nine structural
shocks in the model. Panel B summarizes the FEVDs of different types of shocks. The productivity
shocks include neutral and investment-specific productivity shocks. The demand shocks include the risk
premium, government spending, and monetary policy shock. The markup shocks include the price and
wage markup shocks. Finally, the energy shocks include the energy demand and supply shocks. HKL
denotes our benchmark model with the translog production function, HKL-CD refers to the Cobb-Douglas
specification with energy (βel = 0), and Smets and Wouters (2007) features the Cobb-Douglas production
function without energy (βel = 0, βe = 0).

At shorter (longer) horizons, the contribution of demand shocks is larger (smaller). However, at all
horizons, we observe that markup shocks are less important drivers of output and labor in our benchmark
model than in the two other models. As a result, the other structural shocks, such as shocks to productivity,
demand, and energy, become more important drivers of the business cycles in our benchmark model than
in the other models.
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Table D.4: Forecast error variance decomposition of output and labor (1 quarter)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.23 0.23 0.24 0.07 0.07 0.07

Risk premium 0.39 0.36 0.35 0.48 0.44 0.43

Government spending 0.13 0.15 0.14 0.17 0.19 0.18

Investment-specific productivity 0.08 0.09 0.09 0.09 0.10 0.11

Monetary policy 0.14 0.14 0.14 0.17 0.17 0.17

Price markup 0.02 0.03 0.03 0.02 0.03 0.03

Wage markup 0.00 0.00 0.01 0.01 0.01 0.01

Energy demand 0.00 0.00 - 0.00 0.00 -

Energy supply 0.00 0.00 - 0.00 0.00 -

Panel B

Productivity shocks 0.31 0.32 0.34 0.16 0.17 0.17

Demand shocks 0.66 0.64 0.63 0.82 0.79 0.78

Markup shocks 0.02 0.03 0.03 0.02 0.04 0.04

Energy shocks 0.01 0.00 - 0.00 0.00 -

Table D.5: Forecast error variance decomposition of output and labor (2 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.23 0.23 0.24 0.04 0.04 0.04

Risk premium 0.39 0.36 0.34 0.50 0.45 0.44

Government spending 0.10 0.11 0.11 0.13 0.15 0.14

Investment-specific productivity 0.10 0.12 0.12 0.11 0.13 0.13

Monetary policy 0.14 0.14 0.14 0.18 0.17 0.17

Price markup 0.03 0.04 0.04 0.03 0.04 0.05

Wage markup 0.00 0.01 0.01 0.01 0.02 0.02

Energy demand 0.01 0.00 - 0.00 0.00 -

Energy supply 0.01 0.00 - 0.00 0.00 -

Panel B

Productivity shocks 0.33 0.35 0.36 0.15 0.17 0.17

Demand shocks 0.63 0.60 0.58 0.81 0.77 0.76

Markup shocks 0.03 0.05 0.05 0.04 0.06 0.07

Energy shocks 0.01 0.00 - 0.00 0.00 -
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Table D.6: Forecast error variance decomposition of output and labor (4 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.24 0.24 0.25 0.02 0.02 0.02

Risk premium 0.37 0.33 0.31 0.50 0.43 0.42

Government spending 0.07 0.08 0.07 0.09 0.11 0.11

Investment-specific productivity 0.13 0.15 0.17 0.13 0.16 0.17

Monetary policy 0.13 0.12 0.12 0.18 0.16 0.16

Price markup 0.04 0.06 0.07 0.05 0.07 0.08

Wage markup 0.01 0.02 0.02 0.02 0.04 0.04

Energy demand 0.01 0.00 - 0.00 0.00 -

Energy supply 0.01 0.00 - 0.00 0.00 -

Panel B

Productivity shocks 0.37 0.39 0.41 0.16 0.18 0.20

Demand shocks 0.57 0.53 0.50 0.77 0.70 0.69

Markup shocks 0.05 0.08 0.09 0.07 0.11 0.12

Energy shocks 0.01 0.00 - 0.00 0.00 -

Table D.7: Forecast error variance decomposition of output and labor (10 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.28 0.27 0.28 0.01 0.01 0.01

Risk premium 0.30 0.24 0.22 0.44 0.35 0.32

Government spending 0.04 0.05 0.05 0.08 0.09 0.08

Investment-specific productivity 0.15 0.18 0.21 0.14 0.17 0.19

Monetary policy 0.10 0.08 0.08 0.15 0.12 0.12

Price markup 0.08 0.12 0.12 0.10 0.15 0.16

Wage markup 0.03 0.06 0.06 0.07 0.11 0.11

Energy demand 0.01 0.00 - 0.00 0.00 -

Energy supply 0.01 0.00 - 0.00 0.00 -

Panel B

Productivity shocks 0.43 0.45 0.48 0.16 0.18 0.21

Demand shocks 0.44 0.37 0.34 0.67 0.55 0.53

Markup shocks 0.11 0.17 0.17 0.17 0.26 0.27

Energy shocks 0.02 0.00 - 0.01 0.00 -
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Table D.8: Forecast error variance decomposition of output and labor (40 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.41 0.36 0.37 0.01 0.01 0.01

Risk premium 0.17 0.13 0.11 0.31 0.22 0.20

Government spending 0.03 0.04 0.04 0.09 0.10 0.09

Investment-specific productivity 0.10 0.12 0.15 0.11 0.12 0.14

Monetary policy 0.05 0.04 0.04 0.10 0.08 0.08

Price markup 0.07 0.15 0.13 0.10 0.18 0.17

Wage markup 0.12 0.16 0.16 0.27 0.29 0.30

Energy demand 0.02 0.00 - 0.01 0.00 -

Energy supply 0.02 0.00 - 0.01 0.00 -

Panel B

Productivity shocks 0.51 0.48 0.52 0.12 0.13 0.15

Demand shocks 0.26 0.21 0.19 0.50 0.39 0.37

Markup shocks 0.19 0.31 0.29 0.36 0.47 0.47

Energy shocks 0.04 0.01 - 0.01 0.00 -

Table D.9: Forecast error variance decomposition of output and labor (100 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.44 0.39 0.40 0.02 0.02 0.02

Risk premium 0.14 0.11 0.10 0.29 0.21 0.19

Government spending 0.03 0.04 0.04 0.11 0.11 0.11

Investment-specific productivity 0.08 0.11 0.13 0.10 0.12 0.14

Monetary policy 0.05 0.04 0.04 0.10 0.07 0.07

Price markup 0.06 0.13 0.12 0.09 0.17 0.16

Wage markup 0.13 0.17 0.18 0.27 0.31 0.32

Energy demand 0.04 0.01 - 0.01 0.00 -

Energy supply 0.04 0.01 - 0.01 0.00 -

Panel B

Productivity shocks 0.52 0.49 0.53 0.12 0.13 0.15

Demand shocks 0.22 0.19 0.17 0.50 0.39 0.37

Markup shocks 0.18 0.31 0.30 0.37 0.47 0.48

Energy shocks 0.08 0.02 - 0.02 0.00 -
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D.6 Additional Impulse Responses

Figure D.2: Impulse responses to price and wage markup shocks
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Notes. The top panels show the responses of output, consumption, investment, and labor to a one-standard-deviation
contractionary price markup shock. The solid, dash-dotted, and dashed lines represent the results based on our benchmark
model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007) model (S&W),
respectively. Similar responses to a one-standard-deviation contractionary wage markup shock are illustrated in the bottom
panels.

Figure D.2 shows the impulse responses of major macroeconomic variables in response to price and
wage markup shocks at the posterior mode of the three models. The top panels illustrate the responses
of output, consumption, investment, and labor to a one-standard-deviation contractionary price markup
shock. The solid, dash-dotted, and dashed lines represent the results based on our benchmark model
(HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007) model
(S&W), respectively. Similar responses to a one-standard-deviation contractionary wage markup shock are
illustrated in the bottom panels.

Clearly, HKL features the smallest responses of major aggregate variables to price and wage markup
shocks. For instance, the peak effects on the output of a one-standard-deviation price markup shock are
0.39%, 0.53%, and 0.52% based on HKL, HKL-CD, and S&W, respectively. For wage markup shocks, the
peak effects on output are 0.39%, 0.46%, and 0.47%. The results for consumption, investment, and labor
are similar.
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Figure D.3: Impulse responses to price and wage markup shocks
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Notes. The top panels show the responses of output, consumption, investment, and labor to a one-standard-deviation
contractionary price markup shock. The solid, dash-dotted, and dashed lines represent the results based on our benchmark
model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007) model (S&W),
respectively. Similar responses to a one-standard-deviation contractionary wage markup shock are illustrated in the bottom
panels. For all three models, we use the posterior mode of our benchmark model. That is, when we evaluate HKL-CD, we set
the parameters at the posterior mode of HKL, except for βel = 0. We similarly employ the parameter values from HKL to
compute IRFs from S&W.

D.7 Why do Markup Shocks Contribute Less?

Using the FEVDs, we show in Section 3.3.3 that the contribution of price and wage markup shocks to
output fluctuation is much smaller in our benchmark model than in the two other models. In Appendix
D.6, we illustrate a consistent result based on the impulse responses of output, consumption, investment,
and labor to price and wage markup shocks in the three different models (Figure D.2).

This section presents a supplementary result. We show that the different posterior modes across
the three models matter for our FEVDs and IRFs. To do so, we draw a similar figure to Figure D.2 but
with the same set of parameter values. That is, when we evaluate HKL-CD, we set the parameters at the
posterior mode of HKL, except for βel = 0. We similarly employ the posterior mode of HKL to compute
IRFs from S&W. Therefore, we can identify the pure effects of the additional model structure, such as the
input complementarity (βel > 0) and the energy input (βe > 0).

Comparing Figures D.2 and D.3 underscores the importance of the changes in the posterior modes.
Given the same set of parameter values, the additional structures in our benchmark model per se do not
generate much difference from the other two models in terms of the IRFs of the major real variables to
markup shocks.
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Table D.10: Forecast error variance decomposition of output and labor (32 quarters)

Output (log yGDPt ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.39 0.41 0.42 0.01 0.01 0.01

Risk premium 0.18 0.18 0.18 0.32 0.33 0.33

Government spending 0.03 0.03 0.04 0.09 0.09 0.09

Investment-specific productivity 0.11 0.11 0.11 0.11 0.11 0.11

Monetary policy 0.06 0.06 0.06 0.11 0.11 0.11

Price markup 0.07 0.07 0.07 0.10 0.10 0.10

Wage markup 0.12 0.12 0.12 0.25 0.25 0.25

Energy demand 0.02 0.00 - 0.01 0.00 -

Energy supply 0.02 0.01 - 0.01 0.00 -

Panel B

Productivity shocks 0.50 0.52 0.53 0.12 0.12 0.12

Demand shocks 0.27 0.28 0.28 0.52 0.52 0.52

Markup shocks 0.19 0.19 0.19 0.35 0.35 0.36

Energy shocks 0.04 0.01 - 0.01 0.00 -

Because the IRFs are similar across the three models when the parameter values are the same, the
FEVDs are also similar. Here, we replicate Table 7 in Section 3.3.3 using the posterior mode of HKL for all
three models.

Table D.10 shows that the FEVDs barely change when the same parameters are used for HKL,
HKL-CD, and S&W. However, our model structure induces different posterior modes with flatter price and
wage Phillips curves and less persistent price and wage markup shocks. These changes are essential for our
results of the reduced contribution of markup shocks to output fluctuations.

D.8 Conditional Cyclicality of Factor Shares

Table 8 in Section 3.3.3 presents the decomposition results of the changes in the unconditional price markup
cyclicality into the changes in the conditional cyclicality based on each structural shock across models. We
illustrate that the input complementarity amplifies the contribution of demand and energy shocks and
further affects the markup cyclicality by rendering the estimated markup shocks to be less relevant to the
US business cycles.

In this section, we show similar decomposition results for the factor share cyclicality. Tables D.11-D.14
cover energy, labor, capital, and profit shares, respectively. Panel A in these tables shows the unconditional
correlation coefficients and covariances of GDP and the corresponding factor share. Panel B decomposes
the unconditional covariance into the contributions of the nine structural shocks in the models. Panel
C summarizes the conditional cyclicality of factor shares arising from different types of shocks. Column
(1) regards the Smets and Wouters (2007) model. HKL-CD in column (2) refers to the Cobb-Douglas
specification with energy. The results based on our benchmark model (HKL) with the translog production
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Table D.11: Covariance decomposition of the energy share cyclicality

(1) (2) (3) (4) (5) (6)

S&W HKL-CD HKL w/
βel = 0

HKL (3)-(2)
(%)

(4)-(3)
(%)

Panel A: Unconditional moments

Correlation coefficient - -0.23 -0.22 0.72 - -

Covariance - -0.42 -0.38 3.72 100 100

Panel B: Conditional moments I

Productivity (neutral) - -0.38 -0.40 -0.45 -27.84 -1.44

Risk premium - -0.02 0.00 2.03 41.03 49.68

Government spending - -0.03 -0.02 0.25 24.47 6.58

Investment-specific productivity - -0.05 -0.04 0.71 36.92 18.11

Monetary policy - -0.01 0.00 0.72 18.89 17.71

Price markup - 0.11 0.09 0.39 -66.80 7.24

Wage markup - -0.02 0.00 0.10 75.73 2.20

Energy demand - 0.00 0.00 0.00 -0.96 -0.04

Energy supply - 0.00 0.00 -0.01 -1.43 -0.04

Panel C: Conditional moments II

Productivity shocks - -0.43 -0.43 0.25 9.08 16.67

Demand shocks - -0.07 -0.03 3.00 84.38 73.96

Markup shocks - 0.09 0.09 0.48 8.93 9.44

Energy shocks - -0.01 -0.01 -0.01 -2.39 -0.07

Notes: Panel A shows the unconditional correlation coefficients and covariances of GDP and the energy share. Panel
B decomposes the unconditional covariance into the contributions of the nine structural shocks in the model. Panel C
summarizes the conditional cyclicality of the energy share based on different types of shocks. The productivity shocks
include neutral and investment-specific productivity shocks. The demand shocks include the risk premium, government
spending, and monetary policy shocks. The markup shocks include the price and wage markup shocks. Finally, the energy
shocks include the energy demand and supply shocks. Column (1) regards the Smets and Wouters (2007) model, featuring
the Cobb-Douglas production function without energy (βel = 0, βe = 0). HKL-CD in column (2) refers to the Cobb-Douglas
specification with energy (βel = 0). The results based on our benchmark model (HKL) with the translog production
function are depicted in column (4). Column (3) is based on the HKL posterior mode without the input complementarity
(βel = 0). Column (5) compares columns (2) and (3) to focus on the contribution of the changes in the parameter estimates
due to the introduction of βel. Column (6) emphasizes the role of βel given the other parameters fixed by comparing
columns (3) and (4). We employ the band-pass filter with a periodicity of cycles between 6 and 32 quarters to the model
variables and calculate the covariances using the representation in Croux et al. (2001, Equation (8)).

function are depicted in column (4). In Column (3), we use the parameters at the HKL posterior mode,
except for the input complementarity parameter being assumed to be zero (βel = 0). Thus, by comparing
columns (2) and (3), we can focus on the contribution of the changes in the parameter estimates, arising
from the introduction of βel (column (5)). Column (6) emphasizes the role of βel given the other parameters
being equal by comparing columns (3) and (4).

As shown in Table 6, the unconditional energy share cyclicality changes most notably when the input
complementarity is introduced. Clearly, the major source of this change is the input complementarity
(βel > 0) and its effects on the transmission of demand shocks (Table D.11). The changes in the labor
share cyclicality, especially the role of demand shocks, are qualitatively similar in the sense that demand
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Table D.12: Covariance decomposition of the labor share cyclicality

(1) (2) (3) (4) (5) (6)

S&W HKL-CD HKL w/
βel = 0

HKL (3)-(2)
(%)

(4)-(3)
(%)

Panel A: Unconditional moments

Correlation coefficient -0.26 -0.23 -0.22 -0.21 - -

Covariance -0.47 -0.42 -0.38 -0.37 100 100

Panel B: Conditional moments I

Productivity (neutral) -0.40 -0.38 -0.40 -0.40 -27.84 -7.92

Risk premium -0.04 -0.02 0.00 0.00 41.03 9.46

Government spending -0.03 -0.03 -0.02 -0.02 24.47 -6.08

Investment-specific productivity -0.06 -0.05 -0.04 -0.04 36.92 -9.32

Monetary policy -0.02 -0.01 0.00 0.00 18.89 6.45

Price markup 0.12 0.11 0.09 0.09 -66.80 22.77

Wage markup -0.03 -0.02 0.00 0.01 75.73 10.20

Energy demand - 0.00 0.00 0.00 -0.96 35.48

Energy supply - 0.00 0.00 0.00 -1.43 38.95

Panel C: Conditional moments II

Productivity shocks -0.46 -0.43 -0.43 -0.43 9.08 -17.23

Demand shocks -0.10 -0.07 -0.03 -0.03 84.38 9.83

Markup shocks 0.09 0.09 0.09 0.10 8.93 32.97

Energy shocks - -0.01 -0.01 0.00 -2.39 74.43

Notes: Panel A shows the unconditional correlation coefficients and covariances of GDP and the labor share. Panel
B decomposes the unconditional covariance into the contributions of the nine structural shocks in the model. Panel C
summarizes the conditional cyclicality of the labor share based on different types of shocks. The productivity shocks include
neutral and investment-specific productivity shocks. The demand shocks include the risk premium, government spending,
and monetary policy shocks. The markup shocks include the price and wage markup shocks. Finally, the energy shocks
include the energy demand and supply shocks. Column (1) regards the Smets and Wouters (2007) model, featuring the
Cobb-Douglas production function without energy (βel = 0, βe = 0). HKL-CD in column (2) refers to the Cobb-Douglas
specification with energy (βel = 0). The results based on our benchmark model (HKL) with the translog production
function are depicted in column (4). Column (3) is based on the HKL posterior mode without the input complementarity
(βel = 0). Column (5) compares columns (2) and (3) to focus on the contribution of the changes in the parameter estimates
due to the introduction of βel. Column (6) emphasizes the role of βel given the other parameters fixed by comparing
columns (3) and (4). We employ the band-pass filter with a periodicity of cycles between 6 and 32 quarters to the model
variables and calculate the covariances using the representation in Croux et al. (2001, Equation (8)).

shocks contribute to the labor share more procyclically. However, its quantitative magnitude is much small
than that for the energy share (Table D.12), consistent with the exposition in Section 3.3.2 based on the
fact that the labor share βl is significantly larger than the energy share βe in the steady state. Also, the
unconditional and conditional cyclicality of the capital and profit shares are largely similar across the
models (Tables D.13 and D.14)
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Table D.13: Covariance decomposition of the capital share cyclicality

(1) (2) (3) (4) (5) (6)

S&W HKL-CD HKL w/
βel = 0

HKL (3)-(2)
(%)

(4)-(3)
(%)

Panel A: Unconditional moments

Correlation coefficient -0.26 -0.23 -0.22 -0.26 - -

Covariance -0.47 -0.42 -0.38 -0.46 100 100

Panel B: Conditional moments I

Productivity (neutral) -0.40 -0.38 -0.40 -0.38 -27.84 -16.35

Risk premium -0.04 -0.02 0.00 -0.03 41.03 37.77

Government spending -0.03 -0.03 -0.02 -0.03 24.47 5.66

Investment-specific productivity -0.06 -0.05 -0.04 -0.05 36.92 13.46

Monetary policy -0.02 -0.01 0.00 -0.02 18.89 16.45

Price markup 0.12 0.11 0.09 0.08 -66.80 6.58

Wage markup -0.03 -0.02 0.00 0.00 75.73 1.29

Energy demand - 0.00 0.00 -0.02 -0.96 16.75

Energy supply - 0.00 0.00 -0.02 -1.43 18.40

Panel C: Conditional moments II

Productivity shocks -0.46 -0.43 -0.43 -0.43 9.08 -2.89

Demand shocks -0.10 -0.07 -0.03 -0.08 84.38 59.87

Markup shocks 0.09 0.09 0.09 0.09 8.93 7.87

Energy shocks - -0.01 -0.01 -0.04 -2.39 35.15

Notes: Panel A shows the unconditional correlation coefficients and covariances of GDP and the capital share. Panel
B decomposes the unconditional covariance into the contributions of the nine structural shocks in the model. Panel C
summarizes the conditional cyclicality of the capital share based on different types of shocks. The productivity shocks
include neutral and investment-specific productivity shocks. The demand shocks include the risk premium, government
spending, and monetary policy shocks. The markup shocks include the price and wage markup shocks. Finally, the energy
shocks include the energy demand and supply shocks. Column (1) regards the Smets and Wouters (2007) model, featuring
the Cobb-Douglas production function without energy (βel = 0, βe = 0). HKL-CD in column (2) refers to the Cobb-Douglas
specification with energy (βel = 0). The results based on our benchmark model (HKL) with the translog production
function are depicted in column (4). Column (3) is based on the HKL posterior mode without the input complementarity
(βel = 0). Column (5) compares columns (2) and (3) to focus on the contribution of the changes in the parameter estimates
due to the introduction of βel. Column (6) emphasizes the role of βel given the other parameters fixed by comparing
columns (3) and (4). We employ the band-pass filter with a periodicity of cycles between 6 and 32 quarters to the model
variables and calculate the covariances using the representation in Croux et al. (2001, Equation (8)).
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Table D.14: Covariance decomposition of the profit share cyclicality

(1) (2) (3) (4) (5) (6)

S&W HKL-CD HKL w/
βel = 0

HKL (3)-(2)
(%)

(4)-(3)
(%)

Panel A: Unconditional moments

Correlation coefficient 0.26 0.23 0.22 0.21 - -

Covariance 0.47 0.42 0.38 0.37 100 100

Panel B: Conditional moments I

Productivity (neutral) 0.40 0.38 0.40 0.39 -27.84 15.83

Risk premium 0.04 0.02 0.00 0.00 41.03 45.14

Government spending 0.03 0.03 0.02 0.02 24.47 1.22

Investment-specific productivity 0.06 0.05 0.04 0.04 36.92 10.21

Monetary policy 0.02 0.01 0.00 0.00 18.89 13.57

Price markup -0.12 -0.11 -0.09 -0.09 -66.80 16.28

Wage markup 0.03 0.02 0.00 -0.01 75.73 7.64

Energy demand - 0.00 0.00 0.00 -0.96 -4.70

Energy supply - 0.00 0.00 0.00 -1.43 -5.17

Panel C: Conditional moments II

Productivity shocks 0.46 0.43 0.43 0.43 9.08 26.03

Demand shocks 0.10 0.07 0.03 0.03 84.38 59.93

Markup shocks -0.09 -0.09 -0.09 -0.10 8.93 23.92

Energy shocks - 0.01 0.01 0.01 -2.39 -9.88

Notes: Panel A shows the unconditional correlation coefficients and covariances of GDP and the profit share. Panel
B decomposes the unconditional covariance into the contributions of the nine structural shocks in the model. Panel C
summarizes the conditional cyclicality of the profit share based on different types of shocks. The productivity shocks include
neutral and investment-specific productivity shocks. The demand shocks include the risk premium, government spending,
and monetary policy shocks. The markup shocks include the price and wage markup shocks. Finally, the energy shocks
include the energy demand and supply shocks. Column (1) regards the Smets and Wouters (2007) model, featuring the
Cobb-Douglas production function without energy (βel = 0, βe = 0). HKL-CD in column (2) refers to the Cobb-Douglas
specification with energy (βel = 0). The results based on our benchmark model (HKL) with the translog production
function are depicted in column (4). Column (3) is based on the HKL posterior mode without the input complementarity
(βel = 0). Column (5) compares columns (2) and (3) to focus on the contribution of the changes in the parameter estimates
due to the introduction of βel. Column (6) emphasizes the role of βel given the other parameters fixed by comparing
columns (3) and (4). We employ the band-pass filter with a periodicity of cycles between 6 and 32 quarters to the model
variables and calculate the covariances using the representation in Croux et al. (2001, Equation (8)).
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