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Abstract

We study business cycles with cyclical returns to scale. Contrary to tightly parameterized production
functions (e.g., Cobb-Douglas and constant elasticity of substitution), we empirically identify strong
input complementarity that leads to procyclical returns to scale. We, therefore, propose a flexible
translog production function that allows complementarity-induced procyclical returns to scale.
We integrate this function into a standard medium-scale dynamic stochastic general equilibrium
(DSGE) model. Our estimated model with input complementarity (i) features procyclical returns
to scale and acyclical price markups, (ii) better matches the cyclicality of factor shares, and (iii)
significantly decreases the contribution of markup shocks to output fluctuations relative to those of
the standard model.
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1 Introduction

Standard business cycle models make strong a priori structural assumptions on the shape of the

production function. The most widely used production function in macroeconomics is the Cobb-

Douglas production function. Despite its convenient tractable features, it imposes an excessively

restrictive structure on how firms substitute their inputs (elasticity of substitution), the productivity

of each input (marginal product of input), and the productivity of all inputs together (returns to

scale). This production function was often justified by the Kaldor (1957) growth facts, but the recent

decline in the labor share (e.g., Karabarbounis and Neiman 2014) calls this justification into question.

Many researchers acknowledge this limitation and have started to adopt a more general constant

elasticity of substitution (CES) production function, but even this production function has important

restrictions: one single constant parameter governs the elasticity of substitution among inputs, and

returns to scale is typically assumed to be constant and fixed over time.

We empirically assess the plausibility of these restrictions by imposing and estimating a flexible

translog production function (Christensen et al. 1973, 1975). Compared to CES, the translog is

another generalization of the Cobb-Douglas production function that allows more flexibility in input

substitution, the marginal product of input, and returns to scale. Similar to the nonparametric

production function estimation technique developed in the industrial organization literature (Gandhi

et al. 2020), we utilize the first-order condition of firms to estimate the marginal product of input

and to assess the variability in returns to scale. We employ standard panel data techniques with

detailed industry-level panel data for the estimation.

In our estimation, we find strong complementarity between labor and energy that leads to

time-varying procyclical returns to scale. The idea of time-varying returns to scale is striking yet

simple. It reflects the idea that when firms employ more factors during boom periods, there are

synergies among these factors that lead to larger aggregate marginal product of inputs and returns

to scale than in recession periods. The procyclical movement in returns to scale also induces a

procyclical wedge between the marginal product of input and the real input price, which is tightly

connected to the price markup cyclicality in standard macroeconomic models.

Motivated by our empirical evidence, we estimate a medium-scale dynamic stochastic general

equilibrium (DSGE) model as in Smets and Wouters (2007), incorporating a flexible translog

production function. Given the empirical importance of complementarity between labor and energy

in generating procyclical returns to scale, we include energy input and allow a translog substitution

parameter between labor and energy. To understand the implications of using the translog production

function, we estimate two other models that are nested in our benchmark model: (i) a standard

two-factor Cobb-Douglas production function with labor and capital, i.e., the Smets and Wouters

(2007) model, and (ii) a three-factor Cobb-Douglas production function that additionally includes

energy input. Comparing the marginal data densities across the three models, we confirm that our
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model generally outperforms the other two in terms of data fit.

The estimated model with the translog production function generates procyclical returns to

scale, consistent with our empirical findings, and acyclical price markups. We confirm significant

complementarity between labor and energy, inducing procyclical returns to scale. In turn, the

procyclical returns to scale in our otherwise standard DSGE model leads to more procyclical price

markups than the conventional models; the large returns to scale during expansions decreases marginal

costs and allows price markups to rise. On the contrary, models with the Cobb-Douglas production

functions—regardless of including or excluding energy input—generate countercyclical returns to

scale and price markups, which are inconsistent with our empirical findings.1

Furthermore, we document that the model with a translog structure better matches the empirical

cyclicality of input shares than other models with Cobb-Douglas production functions. The data show

that labor shares are countercyclical, and energy shares are procyclical. However, the Cobb-Douglas

production function with fixed costs cannot match the different cyclicalities of input shares because

all input shares are perfectly positively correlated. We break this tight link between input shares

and generate data-consistent labor and energy share cyclicality with the flexible translog production

function. Moreover, our model generates procyclical capital and profit shares, as in Smets and

Wouters (2007).

Finally, in our model with procyclical returns to scale, the contributions of price and wage

markup shocks to output fluctuations are substantially smaller than those in models with the Cobb-

Douglas production function. As in Smets and Wouters (2007), we conduct the forecast error variance

decomposition exercise for each of the three different models with the corresponding production

functions. Although integrating the energy input into the conventional Cobb-Douglas production

function has a negligible effect on the decomposition results, adding the translog structure with

procyclical returns to scale reduces nearly one-third of the contribution of the markup shocks to

output. The comparisons of the Bayesian estimation results and the impulse responses of output to

price and wage markup shocks across the different models reveal the importance of procyclical returns

to scale in suppressing the markup shocks. Having procyclical returns to scale changes the Calvo

parameters and amplifies the responses of real variables, which in turn reduces the residual variations

that have previously been attributed to price and wage markup shocks. Thus, the estimated markup

shock processes are less persistent and feature a smaller impetus, making the markup shocks less

important drivers of US business cycles than those in previous studies. The variance decomposition

of price markups reveals that these depressed markup shocks, in addition to the changes in the

responsiveness of price markups to other shocks, render the price markups more procyclical in our

benchmark model than in Cobb-Douglas counterparts.

1The conventional models feature countercyclical returns to scale because of the fixed cost of production. In our
model with translog production, however, the countercyclical effects of the fixed costs on returns to scale are dominated
by the procyclical effects of the input complementarity. See Section 3.3 for details.
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To the best of our knowledge, this paper is the first to investigate the role of procyclical returns

to scale in a business cycle framework. Our paper is closely related to previous studies that go beyond

constant returns to scale in business cycle analysis (Benhabib and Farmer 1994, 1996; Schmitt-Grohé

2000) and a growing literature that generalizes an aggregate Cobb-Douglas production function (e.g.,

Antras (2004); Chrinko (2008); Karabarbounis and Neiman (2014); Cantore et al. (2015)).2 Most

previous studies reject a Cobb-Douglas production function and find complementarity among inputs

beyond what Cobb-Douglas technology implies, similar to our analysis.3 To integrate the general

production function into the DSGE framework, we normalize the translog production function such

that it preserves dimensionless parameters, as pioneered by De Jong (1967) and first incorporated

into the DSGE framework by Cantore and Levine (2012) and Cantore et al. (2014). Relatedly,

Gechert et al. (2022) highlights the importance of normalizing the production function. Regarding

time-varying parameters, Koh and Santaeulàlia-Llopis (2017) propose a CES production function

that features a time-varying elasticity of substitution. We complement previous studies by proposing

a translog production function with time-varying returns to scale.

The procyclical returns to scale speak to the considerable literature that studies the countercycli-

cality of price markup, which is a first-order building block in many subfields of macroeconomics.4

Despite its importance, existing empirical evidence on price markup cyclicality is mixed.5 This paper

finds that integrating procyclical returns to scale leads to a novel procyclical margin in price markups

in the standard medium-scale DSGE model. Our emphasis on procyclical returns to scale differs

from previous papers that emphasize other sources of relatively more procyclical price markup, such

as wage rigidity (Nekarda and Ramey 2020), time-varying demand elasticity (Stroebel and Vavra

2019), and endogenous assortment (Anderson et al. 2020). As a complementary mechanism to ours,

Drautzburg et al. (2021) considers bargaining shocks, which resemble wage markup shocks, and

2There are important studies that microfound the aggregate production function with heterogeneous industry or
firm models (e.g., Atalay 2017; Raval 2019; Oberfield and Raval 2021; Smirnyagin 2022). In particular, Baqaee and
Farhi (2021) show that aggregate returns to scale can vary over time due to the change in allocative efficiency. Our
paper instead extends the production function itself with the translog structure and infers the aggregate implications
of using this more flexible production function.

3One notable exception is Karabarbounis and Neiman (2014), who find that labor and capital are substitutes;
however, when estimating their parameters, they study long-term trends rather than business cycle movements. See,
e.g., Hassler et al. (2019) for a discussion of different substitution patterns across short- and long-run horizons among
energy and other inputs.

4In the context of models with nominal rigidity, countercyclical markups conditional on demand changes are
necessary to explain both procyclical wages and countercyclical unemployment (Rotemberg and Woodford 1991,
Rotemberg 2013). In the study of monetary policy, many New Keynesian models suggest that central banks should
target a constant average markup for price stability (Goodfriend and King 1997). In the scholarship on price dynamics,
countercyclical markups conditional on financial distortion explain missing disinflation during the Great Recession
(Gilchrist et al. 2017). Ravn et al. (2006) find that the introduction of deep habit formation substantially affects the
cyclicality of price markups. Finally, Bils et al. (2018) find that unconditional countercyclical markups explain at least
half of the cyclicality in the labor wedge.

5Some studies find that price markups are countercyclical, and other studies find that price markups are procyclical
or acyclical. See, e.g., Bils (1987), Rotemberg and Woodford (1991), Rotemberg and Woodford (1999), Gali et al.
(2007), Bils et al. (2013), and Bils et al. (2018) for countercyclicality and Hall (2013), Stroebel and Vavra (2019), and
Anderson et al. (2020) for procyclicality.
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explains the factor (capital) share cyclicality using a Bayesian VAR and a structural model. Having

procyclical returns to scale also decreases the contributions of markup shocks to output fluctuations

compared to Smets and Wouters (2007). These results imply that using a translog production

function may alleviate the concerns raised in previous studies about the excessive importance of

markup shocks in New Keynesian models (see, e.g., Chari et al., 2009; Justiniano et al., 2010).

The remainder of this paper is structured as follows. Section 2 presents the industry-level data

and the estimation results with a translog production function. Section 3 presents and estimates a

medium-scale DSGE model with the translog production function and discusses the business cycle

implications. Section 4 concludes the paper.

2 Empirical Analyses

This section estimates production function coefficients and assesses the variability in returns to scale

under the translog production function. We present the data used in this analysis, the empirical

framework, and the estimation results.

2.1 Data

The main dataset used in this paper is the annual six-digit North American Industry Classification

System (NAICS) industry-level data from the NBER-CES Manufacturing Industries Database. This

database records detailed information on 473 manufacturing industries from 1958 to 2009. The

information is compiled from the Annual Survey of Manufacturers and the Census of Manufacturers.

The variables in this database include gross output (value of shipment), value-added, and 4-factor

inputs (labor, capital, material, and energy) for each industry over time. These data also include

industry-specific deflators for output, material, energy, investment, and wage bills for total employees.

Appendix A reports the summary statistics of the data (see also Bartelsman et al. 2000).

The most significant advantage of the NBER-CES data over aggregate data is that they allow

us to exploit both time-series and cross-sectional variations and corresponding panel data techniques

to estimate production function parameters. Substantial variation in the data is especially important

for our analysis, which seeks to relax strong functional form assumptions. The advantage comes at a

cost, as our estimates come only from manufacturing sectors. As a supplementary analysis, we also

use the Integrated Industry-Level Production Account (KLEMS) database, which covers the entire

US private economy but for a smaller number of aggregate sectors and a shorter period. Appendix A

presents the summary statistics and more information about this database. To further support the

representativeness and robustness of the estimated production function parameters, we re-estimate

and confirm our results with the DSGE model using time-series data for the entire US economy, as

shown in Section 3.2.
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2.2 Empirical Framework and Estimation Results

Estimating a translog production function is challenging because it has an excessive number of

parameters.6 For example, for the four inputs available in the NBER-CES and KLEMS data, we

must estimate fourteen parameters with a translog production function, many more than the four

parameters in a Cobb-Douglas production function and the five parameters in a CES production

function. Even with detailed industry-level data for many years, it is difficult to estimate all fourteen

parameters in the translog production function because of multicollinearity.

To overcome the challenge of estimating many parameters, we exploit a firm’s first-order

condition in the spirit of the non-parametric identification method developed in the IO literature

(Gandhi et al. 2020).7 Firms’ optimality conditions generate a relationship between the marginal

product of each input and its price. Using this relationship and a panel data estimation technique,

we recover the part of production associated with the marginal product of a specific input, which has

significantly fewer parameters.

In estimating the first-order condition, we address potential estimation concerns by choosing

the following three specifications. First, we use energy input to tightly link the marginal product of

input (energy) with the real input (energy) price in the first-order condition. Second, we apply log-

linearization and demean the variables to make the equations linear and address potential endogeneity

concerns. Third, we use lagged input prices as instrumental variables to address non-classical

measurement errors and rule out other endogeneity issues. We conduct various robustness checks to

address other potential concerns and report the results in Appendix B.

Estimation Framework. For simplicity, consider the following translog production function with

only two inputs, labor and capital:

ln(Y ) = εa + βl ln(L) + βk ln(K)︸ ︷︷ ︸
Cobb-Douglas

+βlk ln(L) ln(K) +
βll
2

ln(L) ln(L) +
βkk
2

ln(K) ln(K)︸ ︷︷ ︸
second-order terms

, (2.1)

where Y is output, L is labor, K is capital, and εa is the log of total factor productivity. The

first part of the production function is a conventional Cobb-Douglas function, which is a first-

order approximation of a general production function. A translog production function extends this

approximation to the second order. Assuming βlk = 0, βll = 0, and βkk = 0 recovers a Cobb-Douglas

production function.

6For example, Syverson (2011) write: “many researchers also use the translog form... is more flexible, though more
demanding of the data.” It is also difficult to calibrate parameters given that no previous work integrates a translog
production function into the business cycle model.

7The other way to proceed is to impose more structure in the estimation, as we did in Section 3.2.
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By generalizing Equation (2.1) to four different inputs, we have:

ln(Y ) = εa +
∑
i

βi ln(V
i)︸ ︷︷ ︸

Cobb-Douglas

+
∑
i

∑
k

βik
2

ln(V i) ln(V k)︸ ︷︷ ︸
second-order terms

with βik = βki,
(2.2)

where V denotes one of four different inputs indexed by i and k, namely, energy (e), labor, capital,

and material. Here, we allow for a flexible substitution structure among the four inputs, in contrast

to the conventional macroeconomic models that use either two inputs (labor and capital) or three

inputs (labor, capital, and material) with implicitly imposed restrictions on the substitution pattern

among these inputs.

The simplest method to estimate the parameters in Equation (2.2) is to regress log output

on log inputs and treat the residual as the unobserved productivity. This approach has two key

problems for our purpose. First, as we have already emphasized, estimating all fourteen parameters

in this specification is extremely challenging, even with the rich variation available in the panel data.

Second, as widely documented in the productivity estimation literature (e.g., Hall 1988; Evans 1992;

Fernald 2014), flexible inputs are likely to be correlated with productivity, generating inconsistent

estimates of the parameters. For example, productive industries are likely to use more inputs than

other industries in the industry-level data.

To avoid these two concerns, we exploit a firm’s first-order condition. Consider a firm’s first-order

condition with respect to an input V i:

P i

P︸︷︷︸
real input price

= τ i

[
βi +

∑
k

βik ln(V
k)

]
Y

V i︸ ︷︷ ︸
marginal product of input

, (2.3)

where P i is the nominal price of the input V i, and τ i is the wedge or gap between the real input

price P i/P and the marginal product of input V i. The input-specific wedge τ i allows Equation (2.3)

to be consistent with a large class of models that deviates from the frictionless economy. Without

friction, the marginal product of input equals the real input price, and τ i could be treated as a

classical measurement error or the ex post productivity shock as in Gandhi et al. (2020). Once

researchers allow frictions, such as input adjustment costs (Hall 2004), imperfect competition in

output (Rotemberg and Woodford 1999) and input (Berger et al. 2019) markets, and financial

frictions (Jermann and Quadrini 2012; Arellano et al. 2019; Bigio and La’O 2020), a wedge arises

between the marginal product of input and the real input price. This wedge is part of the labor wedge,

which is the difference between the marginal product of labor and the marginal rate of substitution

(see, e.g., Chari et al. 2007; Karabarbounis 2014; Bils et al. 2018). Note that assuming βik = 0 for

all i = 1, ..., 4 recovers the conventional first-order condition under the Cobb-Douglas production
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function: P i

P = τ iβi
Y
V i .

To avoid the extra structural assumptions required to measure real output and the output price

index (see, e.g., Hottman et al. 2016), we rewrite Equation (2.3) as follows:

si = τ i

[
βi +

∑
k

βik ln(V
k)

]
, (2.4)

where si = P iV i

PY is the input expenditure share out of total sales for input V i. The right-hand side is

the wedge τ i multiplied by an output elasticity with respect to the input V i, which is a unit-free

measure of the marginal product of input. The special cases of Equation (2.4) are used to calibrate

parameters or inform price markup cyclicality in previous macroeconomic models. In the frictionless

economy with Cobb-Douglas technology, an exponent of each input in the production function equals

the corresponding input share: si = βi. This restriction is often used to recover the Cobb-Douglas

production function parameters from observed income shares. In models of imperfect competition

with the Cobb-Douglas production function, the wedge is interpreted as the inverse of the price-cost

markup, and the inverse of the input share identifies the markup up to a constant: si = βi
1

markup .

This restriction allows researchers to inform on markup behavior with the input share.

To input the data into Equation (2.4), we log-linearize the equation around the steady state

and allow the input share, wedge, and all inputs to vary across industries and over time, which are

indexed by industry j and time t, respectively:

ŝijt =
∑
k

δikV̂
k
jt + τ̂ ijt, (2.5)

where δik ≡ βik

(
τ̄ i

s̄i

)
, x̂ denotes the log-deviation from the steady state value, and x̄ denotes the

steady state value for any variable x. The log-linearization facilitates the estimation by making the

equation linear in parameters and is consistent with the DSGE analysis in Section 3.1.

We estimate Equation (2.5) using a standard panel data technique. We double-demean the

variables across industries and over time to eliminate industry-specific and time-specific components,

including the aggregate trend. The empirical counterpart of Equation (2.5) is:

ˆ̂sijt =
∑
k

δik
ˆ̂V k
jt + ˆ̂τ ijt, (2.6)

where ˆ̂xjt = lnxjt− 1
J

∑J
j=1 lnxjt−

[
1
T

∑T
t=1

(
lnxjt − 1

J

∑J
j=1 lnxjt

)]
for any variable x. Technically,

the double-demeaning is identical to allowing industry and time fixed effects. Note that although we

demean the variables and remove the aggregate components from all variables, our parameters of

interest, δik, match the aggregate parameters.
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Since the input share sijt and all four inputs V k
jt are observed in the data, Equation (2.6) can be

estimated by regressing the input share on all four inputs and treating the wedge ˆ̂τ ijt as a residual.

However, there are two major problems in estimating Equation (2.5) directly for every input i. First,

the wedge term τ ijt may contain industry-time-varying components, such as an adjustment cost, that

are correlated with inputs and generate a confounding relationship. For example, consider any positive

aggregate shock that raises inputs in production. If an industry faces higher input adjustment costs

relative to other industries, this industry is likely to utilize fewer inputs relative to other industries.8

Second, since the input share si contains the input V i, there is a positive mechanical correlation

between the input share si = V i × P i

PY and the input V i when V i has a measurement error. See, for

example, Berman et al. (2015) for the formal derivation of such a mechanical correlation.

To address the first estimation concern, we choose energy input as a choice variable and focus

on estimating energy efficiency (output elasticity with respect to energy). As a result of using energy

input, there are fewer components in the wedge that can be correlated with V k, particularly regarding

the adjustment cost. The energy input and the intermediates in general are known to have smaller

adjustment costs than other inputs and are typically assumed away (e.g., Basu 1995; Bils et al. 2018).

In addition, other potential concerns related to monopsony power or heterogeneous input quality are

mitigated when we focus on energy shares.9

In addition to using energy input, we utilize lagged double-demeaned input prices, where

demeaning over time only uses past input price information, as instrumental variables to avoid

mechanical correlation and relax concerns related to the remaining wedge term. As previously

discussed, the input share and the input usage generate a positive mechanical correlation when the

variables are measured with error. Unless a researcher has unusually detailed micro-level data, the

input variables in any data have measurement error problems. For example, it is difficult to allow for

bulk discounts or quality differences in material inputs or to control for the education, experience,

and specific skills of labor input. Capital input is known to have a large measurement error even at

the firm level (Collard-Wexler and De Loecker 2020), and the perpetual inventory method in the

NBER-CES data requires an assumption on initial capital stock. Instrumenting inputs with lagged

input prices, which does not involve input usage, solves the mechanical correlation problem that

arises from these measurement errors.

8Note that this problem resembles the issue in estimating Equation (2.2), which arises from the correlation between
productivity and inputs.

9Regarding monopsony power, there are fewer concerns on how firms exercise market power in markets for energy
inputs, and such friction would not appear as a wedge term. Previous studies have documented such frictions in
labor input (e.g., Berger et al. 2019). In contrast, energy production in the U.S. has faced heavy regulation and other
restrictions by Congress, such as tax preferences, spending subsidies, and environmental regulations. As a result, it is
highly unlikely that firms exert market power in their energy inputs. Regarding heterogeneous input quality, energy
input is likely to have homogeneous quality across industries relative to other inputs. Since input prices partially
reflect the quality of inputs, the higher input prices and input shares might reflect a higher quality of inputs, which
will appear as a wedge in Equation (2.5). See, for example, De Loecker et al. (2016) for the structural treatment of
input quality differences in the IO literature.
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Regarding the remaining energy wedge ˆ̂τ ejt, even after eliminating time- and industry-specific

terms, there might exist industry-time-varying wedge components correlated with inputs. By using

the lagged input prices as instruments, we assume that the idiosyncratic ˆ̂τ ejt is not correlated with the

idiosyncratic component of the predetermined input prices. In doing so, we demean the input prices

across industries in a standard panel data method but demean input prices across time using only

the past price information to avoid using forward price information; Appendix B.1 shows that using

the standard double-demeaning method for the instrumental variables generates similar results.10

If the idiosyncratic ˆ̂τ ejt is serially uncorrelated, the lagged double-demeaned input prices satisfy

the exogeneity assumption since they do not affect the current energy wedge. Furthermore, the

instrumental variables satisfy the relevance condition if they are autocorrelated and are correlated

with input usage; Appendix A shows that these instruments are highly correlated with ˆ̂V i
jt.

11

In Appendices B.3 and B.5, we additionally conduct robustness exercises by applying specific

interpretations in ˆ̂τ ejt based on previous macroeconomic models and find that controlling for such

elements in ˆ̂τ ejt has limited effects on the estimation results. For example, consider a multi-industry

business cycle model with heterogeneous price rigidity across industries (e.g., Nakamura and Steinsson

2010). In this case, the energy wedge is a price markup and can vary over time and across industries.

Moreover, if industries facing greater price rigidity alter their future markups (inverse wedge) and

affect their input prices by changing the input usage relative to other industries facing weaker price

rigidity, the exogeneity assumption of instruments could be violated. To address such a concern,

we control for industry-time-varying measures of market power following previous studies, such as

price-cost markups (De Loecker et al. 2020) and the Lerner index (Gutierrez and Philippon 2017).

We also include the measures of price rigidity and inventory-to-sales ratio, which are known to be

closely related to price markup, as well as a measure of financial frictions, adjustment costs, and fixed

costs in production. Our main empirical results do not change with these alternative specifications,

likely because double-demeaning at the detailed industry-time level already eliminates most of the

variation in the energy wedge originating for reasons emphasized in previous models.

Equation (2.6) clearly illustrates which variation in the data identifies the substitution pattern

among energy and other inputs. Suppose that the coefficient of labor in Equation (2.6) is positive;

the energy share increases with an increase in labor input, holding other inputs constant. Under the

translog technology, such an increase in the share of energy is interpreted as a result of an increase

in energy efficiency that arises from an increase in labor input. In this case, the energy and labor

inputs are complements, and the coefficient δek captures the strength of the complementarity. Note

that a large magnitude of δek translates to a considerably smaller magnitude of βek = δek
s̄e

τ̄e due to

10We are grateful to an anonymous referee for this excellent suggestion.
11Note that in using the KLEMS database, the material input is not highly correlated with the lagged input prices

once we double-demean the variables, potentially due to the smaller number of observations available in the KLEMS
data. Accordingly, we use the NBER-CES as our main dataset and the KLEMS data for supplementary analyses.
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the small energy share s̄e in the data.

Since our empirical strategy is heavily motivated by the productivity estimation literature on

industrial organizations, comparing our estimation technique with those in the literature is worthwhile.

One key difference in our approach is that we rely on the representative production function, as in

a typical DSGE model. Since our exercise is intended to discuss the aggregate parameters, we do

not believe that this assumption is particularly worrisome. Additionally, in Section 3.1, we show

that a model counterpart of the industry-level energy share (2.5) can be derived by aggregating the

corresponding firm-level first-order condition with an assumption on the firm-level translog production

function. Similarly, Appendix C.5 illustrates how the aggregate translog production function arises

from the explicit aggregation of the firm-level translog production functions. Within the structure of

our model, across different levels of aggregation, the interpretations of the production parameters are

the same and the estimation assumptions are similar.

Given the industry-level production function, our use of the first-order condition follows Gandhi

et al. (2020), who estimate the first-order condition to allow a flexible substitution pattern in a

production function. One advantage of using industry-level data is the availability of entity-level

input price measures, which are rarely available in more micro-level data. We use input price

deflators as instrumental variables to alleviate the mechanical correlation problems and endogeneity

concerns. In addition, we use them to measure the quantity of inputs at the entity level and therefore

avoid input price bias in using the product- or firm-level data (see, e.g., De Loecker and Goldberg

2014). Double-demeaning, instrumenting, and controlling for variables to address the potential

endogeneity of the energy wedge in estimating the first-order condition is similar to the methods

that address the endogeneity of total factor productivity in estimating the production function.

Our use of instrumental variables is similar to the method of Doraszelski and Jaumandreu (2013),

who use the first-order conditions and lagged input prices to address the issue of simultaneity. The

double-demeaning with an instrumental variable approach resembles the dynamic panel data method

(e.g., Arellano and Bond 1991; Blundell and Bond 1998), and controlling for the potential energy

wedge in our robustness exercise is similar to the control function approach (e.g., Olley and Pakes

1996; Levinsohn and Petrin 2003; Ackerberg et al. 2015).

Estimation Results. Table 1 presents the estimated parameters in Equation (2.6). Columns

(1)-(3) present the results using the NBER-CES database, and Columns (4)-(6) present the results

using the KLEMS database. In using the NBER-CES database, we do not impose weights on

each observation for our baseline analyses, but weighting the observation with the industry-specific

output leads to similar estimation results. We use both one- and two-year-lagged input prices

as instrumental variables to improve the relevance condition. In using the KLEMS database, we

explicitly weighted the observation by an average industry output, given that the motivation for
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Table 1: Estimation of Equation (2.6)

Dependent Variable: Energy Share
Data NBER-CES KLEMS

(1) (2) (3) (4) (5) (6)
Labor 1.923*** 1.845*** 1.784*** 2.112* 2.343** 1.828**

(0.556) (0.526) (0.502) (1.104) (1.001) (0.923)

Energy -0.612** -0.559** -0.557** 1.338 1.293* 1.663***
(0.268) (0.244) (0.239) (0.843) (0.722) (0.542)

Material 0.180 0.176 1.074 0.596
(0.233) (0.175) (1.581) (1.260)

Capital 0.035 0.184 0.444 0.319
(0.339) (0.231) (0.632) (0.425)

CES test 7.35 8.67 8.05 5.41 5.27 9.09
(p-value) .01 0 0 .02 .02 0
J-test 3.94 3.28 3.94
(p-value) .41 .66 .56
Observations 22759 22759 22759 1062 1062 1062

Note. Columns (1)-(3) present the IV regression results using the NBER-CES database, and Columns (4)-(6) present
the IV regression results using the KLEMS database. All four inputs (labor, energy, material, and capital) and the
energy input share are logged and double-demeaned across industries and time. The lagged double-demeaned input
prices, which are demeaned using only past price information, for all four inputs are used as instrumental variables;
both t− 1 and t− 2 lagged input prices are used for the NBER-CES database, and only t− 1 lagged input prices are
used for the KLEMS database. In using the KLEMS data, the observations are weighted by industry-specific output
to inform the aggregate representative parameters. For the implementation, we use the GMM specification with the
weighting matrix that accounts for the arbitrary correlation among observations within industries. The standard errors
in parentheses are clustered at the industry level. The CES test statistic and the corresponding p-value regard the null
hypothesis of the (nested) CES functional form (see Appendix B.6), and the J-test and the corresponding p-value refer
to the Hansen’s J-statistics and p-value for overidentifying restrictions, respectively. *, **, and *** indicate significance
at the 0.1, 0.05, and 0.01 levels, respectively.

using the KLEMS data is to inform the aggregate economy beyond the manufacturing sectors. We

only use one-year-lagged input prices since two-year-lagged input prices are not highly correlated

with inputs with double-demeaning (with past information). However, adding two-year-lagged input

prices as instrumental variables does not alter the main results. Appendix B.2 shows that the main

results remain robust to using two- and three-year lagged double-demeaned input prices and allowing

the correlation of ˆ̂τ ejt with idiosyncratic lagged input prices up to one year in both databases.

Column (1) is based on the NBER-CES database with all four inputs. The coefficient in front of

labor is the most economically and statistically significant estimate, reflecting the complementarity

between labor and energy. The estimated parameter shows that a one-percent increase in labor leads
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to an increase in the energy share of approximately 1.9 percent. The strong complementarity between

labor and energy is robust to excluding material or capital input, as shown in Columns (2)-(3), and

to using the KLEMS database, as shown in Columns (4)-(6). The coefficient in front of energy is

negative in Columns (1)-(3) but positive in Columns (4)-(6), potentially because the energy input

becomes less efficient as the manufacturing sectors use more energy but becomes more efficient as the

economy as a whole utilizes more energy. The coefficients of capital and material are not statistically

significant regardless of using different specifications or data, consistent with the unit elasticity of

substitution between energy and material or capital featured in Cobb-Douglas production functions.

Our results suggest the need for a more flexible production function with respect to energy

input for macroeconomic models. The coefficient of labor is clearly economically and statistically

different from zero, formally rejecting the Cobb-Douglas production function that requires the energy

input share to be invariant with respect to any factor input. Furthermore, the empirical results do

not support a nested CES production function (see also Appendix B.6). For the robustness checks,

Appendix B revisits the main empirical results by considering various other specifications, such as

adjusting for the fixed costs in production and controlling for more variables. The key complementarity

result between labor and energy, δel > 0, remains robust across different specifications and is largely

consistent with the Bayesian estimation results in Section 3.2.

2.3 Returns to Scale Cyclicality

This section formally defines the returns to scale of the translog production function and assesses its

cyclicality. Conceptually, returns to scale measures by what percentage output increases when all

inputs increase by one percent. Specifically, by deriving the local elasticity of scale (Hanoch 1975;

Epifani and Gancia 2006) for the translog production function F ({V i}; εa) in Equation (2.2), the

industry-time-specific returns to scale are expressed as follows:

rtsjt =
∑
i

[
βi +

∑
k

βik ln(V
k
jt)

]
, (2.7)

where rtsjt ≡
∂ log[F ({λV i

jt};εat )]
∂ log(λ) |λ=1 denotes the returns to scale and λ reflects the proportional changes

in all inputs. Under the conventional Cobb-Douglas production function, the returns to scale do not

depend on inputs: rtsjt =
∑

i βi. Under the translog production function, however, the returns to

scale change with input usage. The degree of change depends on the parameters {βik}, governing the

substitution pattern among inputs. If inputs are complements (substitutes), an increase in one input

raises (lowers) both the efficiency of other inputs and the returns to scale. The returns to scale in

Equation (2.7) nest the constant returns to scale (rts = 1) embedded in the CES and Cobb-Douglas

production functions.

To examine the returns to scale with the estimated parameters, we follow previous studies on
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returns to scale (Hall 1990; Basu and Fernald 1997) and additionally assume that the wedge does

not differ across inputs: τ ijt = τjt. This assumption still allows the common components of the wedge

across different inputs, such as the price markup and fixed cost of production, and it is consistent with

the DSGE model presented in Section 3. Despite its consistency with previous work and the DSGE

model, one potential concern about this assumption is the presence of an input-specific adjustment

cost that is likely to differ across different inputs. In Appendix B.4, we explicitly integrate the

input-specific adjustment cost into the analysis and show that the returns to scale cyclicality results

are robust to this concern.

With the common wedge assumption, rewriting the returns to scale by combining Equation

(2.7) with the sum of Equation (2.4) across all input shares and log-linearizing the resulting equation,

we have:

r̂tsjt = −τ̂jt + ŝall
jt , (2.8)

where sall
jt ≡

∑
i s

i
jt denotes the sum of all four input expenditure shares of total sales for industry

j at time t. ŝall
jt is observed in the data, and τ̂jt can be recovered as a residual of Equation (2.6)

with the estimated parameters reported in Column (1) of Table 1. Similar to what we have done for

Equation (2.5), we use double-demeaned variables to recover the log-linearized variables in the data.

Due to the demeaning, our estimation strategy only identifies the wedge up to a constant and does

not shed light on the level of returns to scale. However, we can still analyze the association between

returns to scale and value-added and infer the cyclicality of the returns to scale.

Figure 1 presents a strong positive relationship between returns to scale and value-added despite

using the two different databases. We interpret this result as empirical evidence that supports the

notion of procyclical returns to scale; when industries experience larger (smaller) value-added, they

preserve larger (smaller) returns to scale. The procyclical notion of returns to scale mainly arises

from the strong input complementarity between energy and labor, increasing the marginal product

of energy in expansions. As a result, production becomes more efficient in expansions with larger

returns to scale and an inverse wedge. Since a large part of the inverse wedge is the price markup in

canonical DSGE models, our results have important implications for price markup cyclicality. We

explore this link more carefully in a standard medium-scale DSGE model in Section 3.

3 Macroeconomic Implications

Motivated by our empirical results, we explore the macroeconomic implications of the complementarity-

induced procyclical returns to scale. We integrate the flexible translog production function into a

standard medium-scale DSGE model (Smets and Wouters 2007). We re-estimate the model using a

Bayesian method with aggregate time-series data and confirm the procyclical returns to scale that

arise from the complementarity between labor and energy. By comparing our benchmark model with
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Figure 1: Returns to scale

(a) NBER-CES (b) KLEMS

Note. Figure 1 shows the results based on both the NBER-CES (1a) and the KLEMS data (1b). The outliers are
excluded for the visibility of the results. The y-axis is the returns to scale, and the x-axis is the value-added. The
returns to scale is recovered based on Equation (2.8). All the variables are in double-demeaned logged values, capturing
how much percentage the returns to scale increase on average when the value-added increases by one percent. The
slopes of the linear lines in Figures 1a and 1b are 1.36 and 1.39, respectively.

models assuming Cobb-Douglas production functions, we find that the model with the procyclical

returns to scale (i) generates acyclical price markups instead of countercyclical price markups as

in the standard models, (ii) matches the different cyclicality of input shares, and (iii) decreases

approximately one-third of the contribution of price and wage markup shocks to output fluctuation.

3.1 Model

This section describes how we extend and nest the Smets and Wouters (2007) model. Our discussion

focuses on the key differences from the standard model and the relationship with the empirical

framework in Section 2. In particular, we characterize the translog production function with energy

input, the corresponding changes in the first-order conditions, and the modeling of the energy market.

The other structure of the model follows Smets and Wouters (2007) closely. There exist households,

labor unions, final good producers, intermediate goods producers, the government and central bank,

and global energy consumers and suppliers in the model. The model features sticky prices, sticky

wages, costly capacity utilization, investment adjustment costs, and consumption habits. To focus

on the cyclical properties, the model equations below are written in detrended variables using the

growth rate on the balanced growth path. The details of the model are relegated to Appendix C.
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Production Function. Consider the following detrended translog production function for inter-

mediate good i at time t:

yt(i) = exp(εat )[k
s
t (i)]

βk [lt(i)]
βl [et(i)]

βe︸ ︷︷ ︸
Cobb-Douglas

(
lt(i)

l̄

)βel log(et/ē)
(
et(i)

ē

)βel log(lt/l̄)

︸ ︷︷ ︸
second-order terms

− υ︸︷︷︸
fixed costs

with βk + βl + βe = 1,

(3.1)

where kst (i) represents capital services used in production, lt(i) is labor, and et(i) is energy. lt and et

are aggregate labor and energy, respectively, which individual firms take as given when maximizing

their profits, and ē and l̄ are steady-state values of et and lt, respectively. Aggregate productivity

exp(εat ) follows an exogenous process, and υ is the fixed cost in production. The first part of the

production function has a conventional Cobb-Douglas form with constant returns to scale, and the

second part captures the second-order terms. All variables in Equation (3.1) are expressed with

lowercase letters, denoting the detrended variables around the balanced growth path.12

We extend the standard two-factor Cobb-Douglas function with labor and capital to integrate

the core of the empirical findings. Given the economically and statistically significant estimate in

Table 1, indicating the complementarity between labor and energy, we introduce an energy input

et(i) and allow the translog substitution structure between labor and energy via the substitution

parameter βel in the second-order terms. It is straightforward that our production function nests

the three-factor Cobb-Douglas with βel = 0 and the two-factor Cobb-Douglas used in Smets and

Wouters (2007) with βel = 0 and βe = 0. We utilize these two special cases of our general translog

production function to emphasize how our new production function changes the traditional business

cycle results.

We parsimoniously adapt the translog structure to business cycle models. When the model (3.1)

and the empirical (2.2) production functions are compared, the two major changes are apparent. First,

we propose the three-factor translog production function with labor, capital, and energy; we do not

additionally include material input with the input-output structure. Although adding more inputs is

a potentially exciting margin to explore, this is unnecessary for the procyclical returns to scale results

and could complicate the already complex analyses of the medium-scale DSGE model. Additionally,

Columns (3) and (6) in Table 1 show that there still exists strong complementarity between labor

and energy even when material input is excluded. Because the labor-energy complementarity is the

most significant, robust, and necessary empirical estimate for the time-varying returns to scale, we

focus on βel and the corresponding translog structure in the model and abstract away from the other

translog parameters.13 This minimal adjustment from the conventional framework highlights the role

12Specifically, yt(i) = Yt(i)
γt , et(i) = Et(i)

γt , lt(i) = Lt(i), and kst (i) =
Ks

t (i)

γt , where γ denotes the steady-state gross
growth rate.

13Specifically, we do not allow the translog structure between energy and the other inputs (and energy itself).
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of the translog structure while avoiding overcomplicating theoretical investigations.

Second, we normalize the production function. The inputs in the second-order terms appear as

deviations from the steady-state value. This formulation carefully follows previous studies that inte-

grate the generalized production function into business cycle models to make the production function

parameters dimensionless or unit-free (see, e.g., Cantore and Levine 2012; Koh and Santaeulàlia-

Llopis 2017). By expressing the production function (3.1) as log yt(i)+υ
ȳ+υ , it is straightforward that the

production function parameters are dimensionless with our normalization. Appendix C.6 explicitly

shows that the production parameters depend on units of variables without making such a normal-

ization. The normalization also makes the second-order term disappear in steady state and makes

our production function directly comparable to the standard Cobb-Douglas specifications without

changing the long-run balanced growth path.

When compared to the empirical specification (2.2), there are other minor changes in the

normalized translog production function (3.1) that closely follows the specifications in Smets and

Wouters (2007). We allow individual firm i’s translog production function in the economy and

introduce the second-order terms related to the returns to scale, lt and et, as an aggregate externality

for individual firms so that they do not choose their own returns to scale.14 In addition, as in previous

work, we incorporate fixed costs in production υ so that firms earn zero profit in steady state. Given

that our main empirical analyses in Section 2 do not allow these costs, Appendix B.5 revisits the

empirical estimation and finds that the input complementarity and procyclical returns to scale are

robust to the existence of the fixed costs. Finally, we include a labor-augmenting deterministic

growth rate in the economy so that we can compare the model’s outcome to the time-series data with

a trend. Appendix C.6 presents the other general properties of the normalized translog production

function (3.1).

First-order Conditions. Given real wage wt, real price of capital service rkt , and real price of

energy pet , firm i solves its cost-minimization problem subject to the translog production function

(3.1). The first-order conditions with respect to energy, labor, and capital are given by:

pet = mct(i)
yt(i) + υ

yt(i)

(
βe + βel l̂t

) yt(i)

et(i)
, (3.2)

wt = mct(i)
yt(i) + υ

yt(i)
(βl + βelêt)

yt(i)

lt(i)
, (3.3)

Note that the substitution parameter between energy and capital (δek) or between energy and material (δem) is not
statistically significant in Table 1. Also, the sign of the energy square term parameter (δee) is not robust to using
different datasets: δee is estimated to be negative based on the NBER-CES data but positive based on the KLEMS
data.

14This specification is similar to the externality assumption in the increasing returns to scale literature (e.g., Baxter
and King 1991) or the redistributive shock introduced in Rios-Rull and Santaeulalia-Llopis (2010).
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rkt = mct(i)
yt(i) + υ

yt(i)
βk

yt(i)

kst (i)
, (3.4)

where mct(i) is the real marginal cost of production or the inverse price markup that arises from

monopolistic competition and x̂ is the log deviation from the steady state value x̄ for any variable x.

As in our empirical analyses (Equation (2.3)), Equation (3.2) shows that the real energy price equals

the marginal product of energy multiplied by the wedge that includes the real marginal costs and

the term related to the fixed cost. Although we evaluate Equation (3.2) at the aggregate level in

this model, evaluating the same equation at the industry level recovers the industry-time-varying

first-order condition used in Section 2.15

Compared to the model with a Cobb-Douglas specification with energy input, the only extensions

with the translog are βel l̂t and βelêt in the first-order conditions (3.2) and (3.3). Clearly, βel has a

first-order effect on factor demand. Assuming complementarity between labor and energy (βel > 0),

an increase in labor or energy during expansions raises the marginal product of the other input more

than in the standard case. In contrast, there is a smaller increase in the marginal product of input if

labor and energy are substitutes (βel < 0). Note that changing βel has no direct first-order effect

on production (3.1). Our production function is identical to the Cobb-Douglas specification with

log-linearization, as explicitly shown in Appendix C.6. On contrary, the model’s first-order conditions

are different from their Cobb-Douglas counterparts. This feature of the model is desirable given

that our empirical framework in Section 2 relies solely on the first-order conditions to identify the

complementarity between labor and energy inputs. Within the structure of the otherwise standard

model, we reassess our empirical results by re-estimating the key parameter βel with the aggregate

data.

Energy Market. Given that we introduce an energy input into the production function, we need to

specify the energy market. We introduce a global energy market into our model where the real energy

price pet is determined subject to energy demand and supply shocks. We impose a parsimonious

structure on the energy market to focus on the general production function and minimize deviations

15Specifically, consider a continuum of firms, which is indexed by i and operates in industry j. yt(i, j) is given
by f(kst (i, j), lt(i, j), et(i, j); lt(j), et(j), ε

a
t ), where lt(j) and et(j) are aggregated labor and energy at the industry

level, respectively, and f(kst (i), lt(i), et(i); lt, et, ε
a
t ) denotes the production function yt(i) in Equation (3.1). Each

firm (i, j) takes lt(j) and et(j) as given. Under this condition, the firm-level cost minimization problem implies that
set (i, j) = τt(i, j)

(
βe + βel l̂t(j)

)
, where set (i, j) and τt(i, j) are the energy share and the wedge at the firm-industry-

time-level, respectively. When firms in the same industry j are exposed to the same industry-level realization of
Calvo shocks, these firms become symmetric, and we obtain set (j) = τt(j)

(
βe + βel l̂t(j)

)
, which features industry-level

labor in the marginal product of energy. Furthermore, cross-sectional aggregation implies that, up to log-linearization,
set = τt

(
βe + βel l̂t

)
, which is the same aggregate equation that we can derive from Equation (3.2). Although we allow

the input dispersion to link the theory with the empirical analyses tightly, alternatively, we can assume that production
takes place at a representative firm and that intermediaries repackage goods and are subject to Calvo-type price-setting
friction. This specification removes the dispersion of factor inputs across i and yields an identical aggregate dynamic
to that of the current model up to the first order.
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from the benchmark Smets and Wouters (2007) model.

The global energy demand, excluding US industrial usage et, is denoted by edt . The energy

market clearing condition is given by:

et + edt = est , (3.5)

where est is the global energy supply. The global energy supply is determined by the energy price and

exogenous disturbances:

est
ēs

=

(
pet
p̄e

)κs

exp(εest ), (3.6)

where κs is the price elasticity of est , and the exogenous supply disturbances εest follow an AR(1)

process: εest = ρesε
es
t−1 + ηst , where ηst ∼ (0, σ2

es). We assume that ϕe fraction of est is produced

domestically. Thus, the US net energy import is given by et − ϕee
s
t , which implies that the gross

domestic product (GDP) is yGDP
t = yt − (et − ϕee

s
t ).

Global energy demand, excluding US industrial usage, depends on the energy price pet , exogenous

disturbances to demand εedt , US GDP yGDP
t−1 , and real interest rates Et−1[Rt−1/Πt], where Rt and Πt

represent gross nominal interest rates and inflation, respectively:

edt
ēd

=

(
yGDP
t−1

ȳGDP

)ρey (
Et−1[Rt−1/Πt]

R̄/Π̄

)ρerr (pet
p̄e

)−κd

exp(εedt ), (3.7)

where κd is the price elasticity of global energy demand. The exogenous demand disturbances εedt

follow an AR(1) process: εedt = ρedε
ed
t−1 + ηdt , where ηdt ∼ (0, σ2

ed). Because global economic activity

positively affects energy demand (Kilian, 2009; Balke and Brown, 2018), we include lagged US GDP

and real interest rates on the right-hand side as proxies for global economic activity. Furthermore,

real interest rates capture the states of financial markets that might affect energy prices, as discussed

in Kilian (2014) and Basak and Pavlova (2016).

The remaining parts of the model are identical to those in the Smets and Wouters (2007) model.

See Appendix C for the full structure of the model.

3.2 Bayesian Estimation

This section presents the Bayesian estimation, consisting of the likelihood function, the prior, and

the posterior. For the objective comparisons across models, we apply the same Bayesian techniques,

prior, and data as in Smets and Wouters (2007) to both our benchmark model with the three-factor

translog function and the model with the three-factor Cobb-Douglas function (βel = 0). We also bring

in the energy data and make relevant prior assumptions to estimate the new parameters introduced
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regarding the energy market. The estimation results not only confirm the input complementarity

(βel > 0) we find in Section 2 but also reveal more rigid prices and wages and less persistent markup

shocks. These changes are important in understanding the sources of the business cycle, which we

analyze in Section 3.3.3.

We use a Kalman filter to compute the likelihood of a state-space system. For the state equation,

we employ the algorithm suggested in Sims (2002). Our observation equation consists of nine variables,

including the growth rate of the global energy supply ∆ log(Es
t ) ≡ log(Es

t )− log(Es
t−1), the logarithm

of the real energy price log pet , and the seven major macroeconomic variables used in Smets and

Wouters (2007, Equation (15)):



dlGDPt

dlCONSUMPTIONt

dlINV ESTMENTt

dlWAGEt

lHOURSt

dlPRICEt

FEDFUNDSt

lENERGY PRICEt

dlENERGYt



=



γ̄

γ̄

γ̄

γ̄

l̄

π̄

r̄

p̄e

γ̄



+



ŷGDP
t − ŷGDP

t−1

ĉt − ĉt−1

ît − ît−1

ŵt − ŵt−1

l̂t

π̂t

r̂t

p̂et

êst − êst−1



+



0

0

0

0

0

0

0

0

νt



, (3.8)

where ĉt, ît, π̂t, and r̂t denote the log deviations of (detrended) consumption, investment, gross price

inflation, and gross nominal risk-free return, respectively.

We obtain the global energy quantity data {Es
t } from BP Energy (2020). The real energy

price is computed by the ratio of the producer price index for total energy to the GDP deflator.

Because it is an index, we demean the logarithm of the energy price in Equation (3.8). For the other

macroeconomic variables, we extend the dataset constructed by Smets and Wouters (2007) to later

periods. Our sample spans from 1966:q1 to 2019:q4. Given the binding zero lower bound, we replace

the federal funds rate with the shadow rate of Wu and Xia (2016) from 2009:q1 to 2015:q4. Because

Es
t data are available only at an annual frequency, we interpolate the annual series to construct a

quarterly measure and introduce a measurement error νt in the observation equation. The standard

deviation of νt is denoted by σν . In total, we have nine observables, nine structural shocks (global

energy supply and demand shocks and the seven macroeconomic shocks in Smets and Wouters 2007),

and one measurement error. See Appendix D for further data details.

Table 2 presents the prior and posterior distributions of the parameters regarding the translog

structure and the energy market. We assume the same prior as Smets and Wouters (2007) for the

other parameters. Among the new parameters, ē
ēs , the domestic share of global energy usage in
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Table 2: The prior and the posterior of the new parameters

Parameter Prior HKL HKL-CD

Coeff. Description Mean Std. Family Posterior
Mode

Credible Set
(5%, 95%)

Posterior
Mode

Credible Set
(5%, 95%)

βe SS energy shares 0.05 0.02 Gamma 0.012 (0.008, 0.019) 0.011 (0.007, 0.018)
βel Input complementarity 0.5 1/

√
12 Uniform 0.030 (0.008, 0.052) - -

ρey Elasticity of ed w.r.t. yGDP 1 0.8 Gamma 0.17 (0.07, 0.35) 0.24 (0.12, 0.37)
ρerr Elasticity of ed w.r.t. R/Π 1 0.8 Gamma 0.09 (0.03, 0.49) 0.10 (0.04, 0.46)
κd Price elasticity of ed 0.1 0.08 Gamma 0.009 (0.003, 0.201) 0.009 (0.005, 0.086)
κs Price elasticity of es 0.1 0.08 Gamma 0.10 (0.04, 0.12) 0.10 (0.05, 0.11)
σed Std. of ed shocks 1 2 Inv. Gamma 0.74 (0.69, 1.74) 0.75 (0.71, 1.14)
σes Std. of es shocks 1 2 Inv. Gamma 0.72 (0.52, 0.82) 0.72 (0.55, 0.80)
ρed Persistence of ed shocks 0.5 0.25 Beta 0.9997 (0.9968, 0.9998) 0.9997 (0.9997, 0.9998)
ρes Persistence of es shocks 0.5 0.25 Beta 0.9996 (0.9973, 0.9999) 0.9996 (0.9996, 0.9996)
p̄e SS real energy prices 0 2 Normal -0.12 (-3.35, 3.15) -0.01 (-3.21, 3.32)
σν Std. of measurement errors 0.1 0.1 Inv. Gamma 0.05 (0.03, 0.19) 0.05 (0.04, 0.19)
ϕe Domestic share of es 0.0265 0.0094 Normal 0.03 (0.01, 0.04) 0.03 (0.01, 0.04)

Notes: HKL denotes our benchmark model with the translog production function. HKL-CD refers to the Cobb-Douglas
specification with energy but without complementarity (βel = 0). SS stands for steady state. ed, es, yGDP , and R/Π are
global energy demand, supply, US GDP, and US gross real interest rates, respectively. σν is the standard deviation of νt in
Equation (3.8).

steady state cannot be separately identified from the other parameters that characterize the dynamics

of the energy market. Thus, we set ē
ēs at the average value of Et

Es
t

in the data during our sample

period, which is 0.07. Based on previous studies on the energy shares of value-added, we assume

that βe has a Gamma distribution with a 5% mean and 2% standard deviation.16 To facilitate the

comparison between the aggregate estimate of the input complementarity parameter βel and the

micro estimate of δel in Section 2 (Table 1), we use an uninformative prior of βel. Specifically, βel is

assumed to have a standard uniform distribution between 0 and 1.

For the energy market parameters, we use the following priors. We demean log pet in our

observation equation and thus assume that p̄e has a normal distribution with mean zero and standard

deviation two. This choice is similar to the prior of l̄ in Smets and Wouters (2007). For the standard

deviation of the measurement error, we choose the mean and standard deviation of 0.1. The global

share of the US energy production ϕe is given by Et−Eni
t

Es
t

, where E, Eni, and Es represent US energy

demand, US net energy imports, and global energy supply, respectively. The sample average of this

ratio during the sample period and its standard errors are used as the prior mean and standard

deviation of ϕe, respectively. We set loose priors of the energy shock parameters σed, σes, ρed, and

ρes, similar to the shock parameters in Smets and Wouters (2007). For the elasticities in the energy

supply and demand equations (3.6)-(3.7), we rely on a preliminary regression analysis. Specifically,

16The energy shares of value added are assumed to be 4% in Rotemberg and Woodford (1996), 10% in Backus and
Crucini (2000), 4.3% in Finn (2000), and 5.17% in Dhawan and Jeske (2008).
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we estimate logEs
t = c+ dt+ κs log pet + εest and a similar equation for logEd

t by using the lagged

values of Romer and Romer (2004) monetary policy shocks as instrumental variables. Based on the

point estimates and standard errors, we set the prior mean and standard deviations of ρey, ρerr, κd,

and κs. See Appendix D.2 for these regression results.

The posterior is computed using a random walk Metropolis-Hastings algorithm with a chain

length of 500,000. We consider three different models: our benchmark model (HKL), the model

without input complementarity in production (βel = 0; HKL-CD), and the Smets and Wouters

(2007) model (βel = 0, βe = 0; S&W). The acceptance rates of the chains are 27%, 31%, and 28%,

respectively.

As shown in Table 2, the following parameters are newly introduced and estimated relative to

Smets and Wouters (2007). The energy share in steady state βe is estimated to be 1.2%, and the

posterior mode of βel is 0.03. To relate this value to the empirical estimate of δel in Table 1, we note

that the model structure implies the following:

δel = βel
1− βe
βe

− (Φ− 1)βl, (3.9)

where Φ is the gross price markup in steady state.17 At the posterior mode of βel, Φ, βl, and βe, this

equation yields δel = 2.06, which is within the range of one standard error of δ̂el in Table 1. The

price elasticities of global energy demand and supply, κd and κs, are small at the posterior mode,

consistent with the results in Hamilton (2009), Kilian (2009), and Kilian and Murphy (2012). Both

energy supply and demand shocks are estimated to be highly persistent (ρed and ρes) and larger (σed
and σes) than the other structural shocks to match substantial fluctuations in energy prices during

the sample period. Finally, the measurement errors (σν) induced by the interpolation are estimated

to be relatively small.

Among the other parameters common to the Smets and Wouters (2007) model, Table 3 reports

those that show the most noticeable changes across the three models: the parameters associated with

the Calvo price and wage stickiness and the markup shocks. The estimation results show that our

benchmark model features more rigid prices and wages and less persistent markup shocks than the

two other models with Cobb-Douglas production functions.18 More rigid prices are intuitive, given

the input complementarity (βel > 0) reported in Table 2. As explicitly shown in Section 3.3.1, the

input complementarity adds large countercyclical fluctuations to the marginal costs. As a result, the

Bayesian estimator of our benchmark model prefers the stickier prices and the flatter price Philips

curve to match the correlation of inflation and GDP observed in the data. Given the stickier prices,

17Equations (3.2), (C.70) and (C.80) are used in the derivation.
18Although the Calvo parameters in our benchmark model are different from those in the two other models, they

are broadly consistent with the empirical estimates in Nakamura and Steinsson (2008) and Barattieri et al. (2014) and
the model-based estimates in Justiniano et al. (2010, 2011).
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Table 3: The Calvo and the markup shock parameters in the three models

Parameter Prior Posterior Mode

Coeff. Description Mean Std. Family HKL HKL-CD S&W

ξp Calvo sticky price 0.5 0.1 Beta 0.82 0.78 0.77

ξw Calvo sticky wage 0.5 0.1 Beta 0.83 0.79 0.79

ρp Price markup shocks: 0.5 0.2 Beta 0.89 0.95 0.94

µp λ̂p
t = ρpλ̂

p
t−1 + ηpt − µpη

p
t−1, 0.5 0.2 Beta 0.79 0.87 0.85

σp where ηpt ∼ N(0, σ2
p). 0.1 2 Inv. Gamma 0.13 0.13 0.13

ρw Wage markup shocks: 0.5 0.2 Beta 0.97 0.98 0.98

µw λ̂w
t = ρwλ̂

w
t−1 + ηwt − µwη

w
t−1 0.5 0.2 Beta 0.95 0.96 0.96

σw where ηwt ∼ N(0, σ2
w). 0.1 2 Inv. Gamma 0.36 0.37 0.37

Notes: HKL denotes our benchmark model with the translog production function. HKL-CD refers to the Cobb-
Douglas specification with energy but without complementarity (βel = 0). S&W is the Smets and Wouters (2007)
model.

the stickier wages in our benchmark model are also intuitive. As the Bayesian estimator matches

the real wage fluctuation in the data (Equation (3.8)), it changes the wage Philips curve parallel

to the flatter price Philips curve and makes nominal wages more rigid.19 Then, the flatter Philips

curves amplify the real variables’ responses to structural shocks, yielding smaller residual variations

to be explained by markup shocks. Consistent with this intuition, the contribution of price and wage

markup shocks to output fluctuations is substantially smaller in the benchmark model than in the

two other models, as shown in Section 3.3.3. For the rest of the parameters, the estimation results

are similar across the three models (see Appendix D.3).

Our benchmark model (HKL) compares favorably with the two other models regarding the

fit to the data. Table 4 shows the marginal data densities for the nine observables in Equation

(3.8) and for the seven variables in Smets and Wouters (2007). When the original set of seven

variables in the Smets and Wouters (2007) model is used, HKL and HKL-CD feature similarly larger

marginal data densities than S&W. When the information in the energy prices and quantities is

also considered, HKL outperforms HKL-CD in terms of the data fit. This result implies that the

input complementarity in our translog framework can provide useful insights into US macroeconomic

fluctuations.

3.3 Business Cycle Implications

This section illustrates the business cycle implications of the normalized translog production function.

Despite its parsimonious structure, our benchmark model features procyclical returns to scale

19See Equations (C.88) and (C.92) in Appendix C for the price and wage Phillips curves.

22



Table 4: Marginal data densities

(1) (2) (3)

Log marginal data density HKL HKL-CD
(βel = 0)

S&W

log(MDD) for the nine observables in
Equation (3.8)

-320.6 -326.3 -

log(MDD) for the seven observables in
Smets and Wouters (2007)

169.1 170.2 159.4

Notes: HKL denotes our benchmark model with the translog production function. HKL-CD refers to the
Cobb-Douglas specification with energy but without complementarity (βel = 0). S&W is the Smets and
Wouters (2007) model. We use the algorithm proposed by Sims et al. (2008) to compute the marginal data
densities.

and acyclical price markups rather than the countercyclical returns to scale and price markups in

the models with Cobb-Douglas production functions. Moreover, the benchmark model generates

countercyclical labor shares and procyclical energy shares consistent with the data and maintains the

countercyclical capital shares and procyclical profit shares, similar to previous studies. Finally, the

variance decomposition exercises show that our framework leads to less important markup shocks for

output fluctuations than the Cobb-Douglas models. These depressed markup shocks, in addition

to the presence of the input complementarity parameter (βel > 0), make the price markups more

procyclical in our benchmark model than the Cobb-Douglas models.

3.3.1 Returns to Scale and Price Markups

Armed with the estimated model using aggregate data, we revisit the returns to scale procyclicality

discussed in Section 2 and investigate price markup cyclicality. Given the normalized translog

production function (3.1), denoted by yt(i) = f(kst (i), lt(i), et(i); lt, et, ε
a
t ), the returns to scale that

firm i faces are given by rtst(i) ≡ ∂ log[f(λkst (i),λlt(i),λet(i);lt,et,ε
a
t )]

∂ log(λ) |λ=1 = [1 + βel(l̂t + êt)]
yt(i)+υ
yt(i)

. Note

that firms take the aggregate labor lt and energy et as given when they change their scales. Since

the cross-sectional dispersion of log(yt(i)) is of the second order, the average returns to scale across

firms, up to the first order, are given by:

r̂tst = r̂ts
trans
t + r̂ts

fix
t

= βel

(
l̂t + êt

)
− Φ− 1

Φ
ŷt, (3.10)

where rtstranst ≡ 1+βel

(
l̂t + êt

)
denotes the part of the returns to scale that arises from the translog

structure and rtsfixt ≡ yt+υ
yt

denotes the part of the returns to scale that emerges because of the

fixed costs in production. The second line of Equation (3.10) is derived by relating the fixed cost

υ to the price markup Φ under the zero-profit condition in steady state, as in Smets and Wouters
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(2007). Note that the rtst is conceptually the same as our empirical measure of returns to scale rtsjt

in Section 2.3 since both of them are based on the cross-sectional average of the firm-level returns to

scale. As a result of the adjustment in the production function (3.1), compared with Equation (2.7),

Equation (3.10) has only one production parameter βel and additionally features the term (rtsfixt )

relevant to the fixed costs in production.

The returns to scale vary over the business cycle with the translog structure and fixed costs.

In the simplest case with the Cobb-Douglas specification (βel = 0) and without fixed costs (υ = 0),

the returns to scale are time-invariant: rtst = βk + βl + βe = 1. Allowing fixed costs in production

recovers the returns to scale in Smets and Wouters (2007), rtsfixt = yt+υ
yt

, which are countercyclical.

During recessions, firms face relatively higher fixed costs and thus larger returns to scale than during

expansions. Additionally, allowing the translog structure makes the returns to scale more procyclical

if inputs are complements (βel > 0) and more countercyclical if inputs are substitutes (βel < 0).

Depending on the degree of input complementarity, the returns to scale may not be negatively

correlated with output, even in the presence of fixed costs.

For completeness, we define the aggregate returns to scale, considering aggregate labor and

energy endogenously changing with the scale of the economy. Because yt is obtained by aggregating

yt(i), which is the same as f(kst , lt, et; lt, et, ε
a
t ) up to the first-order, the aggregate returns to scale

are given by:

R̂TSt = 2βel

(
l̂t + êt

)
− Φ− 1

Φ
ŷt, (3.11)

where RTSt ≡ ∂ log[f(λkst ,λlt,λet;λlt,λet,ε
a
t )]

∂ log(λ) |λ=1. The aggregate returns to scale are derived under the

assumption that all firms change their inputs proportionally such that the aggregate inputs change by

the same proportion. The difference between RTSt and rtst(i) is as follows. For RTSt, the exponents

of the second-order term in Equation (3.1) endogenously vary with aggregate inputs when all firms

adjust their inputs. In contrast, rtst(i) treats the exponents of the second-order term as constant

because only firm i changes its inputs. This difference yields an additional term βel(l̂t + êt) in the

aggregate returns to scale (3.11). Note that RTSt = rtst without the translog structure (βel = 0).

Given the structure of our model, it is straightforward to recover price markups. The changes

in price markups can be most easily understood from the following expression for real marginal costs.

By rearranging and combining the first-order conditions (3.2)-(3.4) and the production function (3.1),

we have:

Φ̂t = −m̂ct = βel(l̂t + êt)− βkr̂
k
t − βlŵt − βep̂

e
t + εat , (3.12)

where Φt is the aggregate price markup, which depends on the translog part of the returns to scale,

r̂ts
trans
t = βel(l̂t + êt), real input prices (r̂kt , ŵt, and p̂et ), and productivity shocks (εat ). The price

24



Table 5: Cyclicality of returns to scales and price markups

(1) (2) (3) (4) (5)

Correlation with log(yGDP
t ) log(rtstrans

t ) log(rtsfixt ) log(rtst) log(RTSt) log(Φt)

HKL 0.74 -1 0.43 0.62 -0.05

(0.36, 0.83) (-1, -1) (-0.74, 0.65) (-0.29, 0.76) (-0.19, 0.10)

HKL-CD (βel = 0) - -1 -1 -1 -0.26

- (-1, -1) (-1, -1) (-1, -1) (-0.33, -0.01)

Smets and Wouters (2007) - -1 -1 -1 -0.27

- (-1, -1) (-1, -1) (-1, -1) (-0.40, -0.04)

Notes: rtstrans
t ≡ 1+βel(l̂t + êt) and rtsfixt ≡ yt+υ

yt
are the returns to scales that arise from the translog production

function and fixed costs, respectively. rtst ≡ rtstrans
t × rtsfixt is the average returns to scale that each firm faces,

RTSt ≡ [1 + 2βel(l̂t + êt)]
yt+υ
yt

is the aggregate returns to scale, and Φt is the gross price markup. All variables are
log-linearized. For each of the three models, we report the correlations of each variable with yGDP

t at the posterior
mode and the 90% credible intervals. HKL denotes our benchmark model with the translog production function,
HKL-CD refers to the Cobb-Douglas specification with energy (βel = 0), and Smets and Wouters (2007) is the
Cobb-Douglas specification without energy (βel = 0, βe = 0).

markup rises when firms employ more complementary inputs, face a decrease in input prices, or

experience positive productivity shocks. Equation (3.12) clarifies how traditional models link price

markup cyclicality to price and wage rigidity. Previous studies have focused on the relative rigidities

of prices and wages, which affect the cyclicality of ŵt. Consider the simple case of a Cobb-Douglas

specification with only labor input. The price markup then becomes Φ̂t = −βlŵt + εat . In this case,

conditional on any shocks other than productivity shock, the price markup cyclicality is governed by

the cyclicality of real wage ŵt, which is tightly related to the relative rigidities of prices and wages.

In our setup, we identify a new term βel(l̂t + êt) that additionally changes the price markup, arising

from a flexible input substitution structure embedded in a general production function.

Columns (1)-(4) in Table 5 show that returns to scale are procyclical in our benchmark model

(HKL), consistent with the results in Section 2, whereas they are countercyclical in the other models.

Column (1) shows the cyclicality of the new returns to scale term, arising from the translog structure

rtstranst = 1 + βel(l̂t + êt). As more inputs are used during expansions, synergies are generated from

the complementarity, leading the economy to produce more. Thus, the correlation of the logarithms

of rtstranst and GDP is positive (0.74). In contrast, as shown in Column (2), rtsfixt features perfect

or nearly perfect countercyclical returns to scale in all three models as the fixed costs become

relatively larger during recessions.20 Column (3) indicates that the total average returns to scale

rtst is procyclical in our benchmark model because the procyclical effect of the translog structure

20In the Smets and Wouters (2007) model, log(yGDP
t ) and log

(
yt+υ
yt

)
are perfectly negatively correlated because

yGDP
t = yt. In models with energy input, although yGDP

t = yt − (et − ϕse
s
t ), we still observe a nearly perfect negative

correlation between log(yGDP
t ) and log

(
yt+υ
yt

)
. This is because the difference between yt and yGDP

t , the net energy
import et − ϕee

s
t , is negligible relative to yt.
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dominates the countercyclical effect of the fixed costs. The aggregate returns to scale RTSt feature

stronger procyclicality due to the endogenous movement in aggregate labor and energy, as shown in

Column (4). In the other models with Cobb-Douglas production functions, the aggregate returns to

scale equal rtsfixt and are countercyclical.

Column (5) shows that the price markups are acyclical in our benchmark model, whereas they

are significantly countercyclical in the other models.21 This additional procyclical variation in the

price markups in HKL originates from the novel element of the returns to scale, r̂ts
trans

. During

expansions, when firms utilize more labor and energy, the complementarity between these inputs leads

to higher marginal productivity, lower real marginal costs, and larger price markups (see Equation

(3.12)). The changes in the parameter estimates (Table 3) associated with the real wage rigidities in

HKL also affect the price markup cyclicality. On the other hand, price markups are countercyclical

in HKL-CD and S&W.22

3.3.2 Factor and Profit Shares

Our translog production function has a novel implications for the income distribution across factors

through its effects on the first-order conditions. By rewriting Equations (3.2)-(3.4) in terms of factor

shares to the first order, we have:

ŝet ≡ p̂et + êt − ŷGDP
t = −Φ̂t + r̂ts

fix
t + ̂(βe + βel l̂t) + (ŷt − ŷGDP

t ), (3.13)

ŝlt ≡ ŵt + l̂t − ŷGDP
t = −Φ̂t + r̂ts

fix
t + ̂(βl + βelêt) + (ŷt − ŷGDP

t ), (3.14)

ŝkt ≡ r̂t + k̂t − ŷGDP
t = −Φ̂t + r̂ts

fix
t + (ŷt − ŷGDP

t ), (3.15)

where set , slt, and skt are energy, labor, and capital shares, respectively, and ̂(βe + βel l̂t) = βel
βe

l̂t,
̂(βl + βelêt) =

βel
βl
êt. The translog structure and energy input change the factor share equations from

Smets and Wouters (2007) in three respects. First, the translog production function induces additional

terms in the energy and labor shares, βel l̂t and βelêt, which constitute the cyclical components of

rtstrans. The larger complementarity (βel > 0) leads to greater energy and labor demand and their

21The acyclical price markup in our benchmark model is broadly consistent with the empirical results in Nekarda
and Ramey (2020). The correlation between GDP per capita and their markup series (band-pass filtered) varies from
-0.66 to 0.37, with a mean of -0.09 across the 14 different specifications and the corresponding markup series.

22The length of the credible intervals under HKL reported in Table 5 is smaller when using a tighter prior of βel.
Specifically, based on the information in Table 1 (the empirical estimate δ̂el and its standard error), Equation (3.9),
and Φ, βl, and βe being equal to their prior means, we can assume a tighter Gamma prior of βel with mean 0.11
and standard deviation 0.03 than a uniform distribution. Under this specification, e.g., the 90% credible interval for
log(RTSt) becomes (0.16, 0.78). Additionally, corr(log(yGDP

t ), log(Φt)) at the posterior mode changes to 0.02 with the
90% credible interval being (−0.08, 0.16).
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Table 6: Cyclicality of factor and profit shares

(1) (2) (3) (4)

Correlation with log(yGDP
t ) Energy Shares Labor Shares Capital Shares Profit Shares

HKL 0.72 -0.21 -0.26 0.21

(0.41, 0.80) (-0.32, -0.03) (-0.39, -0.07) (0.03, 0.32)

HKL-CD (βel = 0) -0.23 -0.23 -0.23 0.23

(-0.33, -0.02) (-0.33, -0.02) (-0.33, -0.02) (0.02, 0.33)

Smets and Wouters (2007) - -0.26 -0.26 0.26

- (-0.36, -0.06) (-0.36, -0.06) (0.06, 0.36)

Data 0.48 -0.26 - -

Notes: For each of the three models, we report the correlations of the logarithm of each variable with log(yGDP
t ) at

the posterior mode and the 90% credible intervals. We compute the empirical energy and labor shares based on the
data used for the Bayesian estimation in Section 3.2 and employ the Baxter and King (1999) filter with a periodicity of
cycles between 6 and 32 quarters. Following Gorodnichenko and Ng (2010), we apply the same filter to the model
variables and calculate the correlation coefficients by using the representation in Croux et al. (2001, Equation (8)).
HKL denotes our benchmark model with the translog production function, HKL-CD refers to the Cobb-Douglas
specification with energy (βel = 0), and Smets and Wouters (2007) is the Cobb-Douglas specification without energy
(βel = 0, βe = 0).

shares during expansions. Second, the energy input used in production allows us to consider the

energy shares. Finally, the net energy imports make yGDP
t marginally different from yt.

Our benchmark model better matches the energy input share in the data than the model with the

Cobb-Douglas production function. As shown in Column (1) of Table 6, our benchmark model features

procyclical energy shares.23 The procyclical energy shares arise from the complementarity between

labor and energy (βel > 0), where a positive βel is motivated by the empirical analyses (Section

2) and is estimated by a Bayesian method (Section 3.2). The input complementarity’s procyclical

effect dominates the fixed costs’ countercyclical effects (rtsfixt ) on energy shares. In contrast, the

Cobb-Douglas production function yields identically countercyclical factor shares (HKL-CD) because

it does not allow input share cyclicalities to differ across factors.

Furthermore, our benchmark model maintains countercyclical labor, capital, and profit shares,

consistent with the models with Cobb-Douglas specifications. As presented in Columns (2) and (3),

the labor and capital shares are similarly countercyclical across the three models because of the

fixed cost in production. This cost generates a countercyclical component in the returns to scale

(r̂ts
fix
t ), decreasing the marginal productivity of factors during expansions. For the labor share,

although our benchmark model has an additional procyclical term (βl + βelêt) arising from the input

complementarity, it is not large enough to overturn the countercyclical effects of the fixed cost.24

23We use monthly US industrial energy usage data from U.S. Energy Information Administration (2021) for et. We
seasonally adjust this series using X-13 ARIMA-SEATS and aggregate it to a quarterly measure. Because this monthly
measure is available from 1973, our sample for Table 6 spans from 1973:q1 to 2019:q4.

24Note that the magnitude of the procyclical term in the labor share (βl + βelêt) is smaller than that in the energy
share (βe + βel l̂t), resulting in a procyclical energy share but a countercyclical labor share. This is because the energy
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The labor share cyclicalities in Table 6 are also comparable to the data and the results in Rios-Rull

and Santaeulalia-Llopis (2010, Table 2) and Karabarbounis (2014, Table 7). Finally, the profit share

is procyclical in all three models, as shown in Column (4).

In addition to assessing the unconditional moments, we verify our benchmark model by comparing

the conditional model moments with their empirical counterparts in Appendix D.4. Given that our

theoretical mechanism is centered on the complementarity between labor and energy, we compare

the model impulse responses of labor and energy to monetary and fiscal policy shocks with the

corresponding empirical impulse responses. To do so, we use the identified structural shocks in Romer

and Romer (2004), Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2018), and Bauer

and Swanson (2022). We find that the theoretical responses in our benchmark model are largely

consistent with the empirical responses. Note that this consistency holds without directly matching

the industrial energy usage et in the Bayesian estimation in Section 3.2.

3.3.3 Variance Decompositions

This section illustrates how the translog production function changes the relative importance of

different driving forces of business cycles. For this purpose, we compute the forecast error variance

decompositions (FEVDs) of output and labor using the three models and find a noticeable change in

the importance of markup shocks. To understand the mechanism behind this result, we investigate

the impulse responses of output to price and wage markup shocks and further decompose the

unconditional price markup cyclicality into the conditional cyclicalities on each structural shock.

The translog specification substantially decreases the contribution of price and wage markup

shocks to business cycles. Table 7 presents the FEVDs of output and labor at an 8-year horizon based

on all three models. Although introducing the energy input under the Cobb-Douglas framework

(HKL-CD) does not meaningfully change the FEVD from that of the Smets and Wouters (2007)

model, additionally introducing the translog specification (HKL) alters the results substantially. The

most notable change is the contribution of markup shocks. Price and wage markup shocks explain

29% and 30% of output fluctuations in the Smets and Wouters (2007) model and the model without

complementarity (HKL-CD), respectively. In contrast, the corresponding FEVD decreases to 19% in

our benchmark model. The results for labor are similar. The FEVDs of labor concerning markup

shocks decrease from 46% (S&W) and 47% (HKL-CD) to 35% (HKL) when we incorporate the input

complementarity between labor and energy. At alternative horizons, we still observe that markup

shocks are less important determinants of output and labor in our benchmark model than in the other

models (see Appendix D.5). As a result, the other structural shocks, such as shocks to productivity,

demand, and energy, become more important drivers of business cycles in HKL than in HKL-CD

share βe is small, and with log-linearization, the contribution of the complementarity βe + βel l̂t becomes βel
βe
l̂t. This

base effect generates a large procyclical variation in the energy share.
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Table 7: Forecast error variance decomposition of output and labor (32 quarters)

Output (log yGDP
t ) Labor (log lt)

HKL HKL-CD S&W HKL HKL-CD S&W

Panel A

Productivity (neutral) 0.39 0.34 0.36 0.01 0.01 0.01

Risk premium 0.18 0.14 0.12 0.32 0.23 0.21

Government spending 0.03 0.04 0.04 0.09 0.09 0.09

Investment-specific productivity 0.11 0.13 0.16 0.11 0.12 0.14

Monetary policy 0.06 0.05 0.04 0.11 0.08 0.08

Price markup 0.07 0.16 0.14 0.10 0.19 0.18

Wage markup 0.12 0.15 0.15 0.25 0.28 0.29

Energy demand 0.02 0.00 - 0.01 0.00 -

Energy supply 0.02 0.00 - 0.01 0.00 -

Panel B

Productivity shocks 0.50 0.47 0.51 0.12 0.13 0.15

Demand shocks 0.27 0.22 0.20 0.52 0.40 0.38

Markup shocks 0.19 0.30 0.29 0.35 0.47 0.46

Energy shocks 0.04 0.01 - 0.01 0.00 -

Notes: Panel A decomposes the forecast error variances into the contributions of nine structural shocks in the
model. Panel B summarizes the FEVDs of different types of shocks. The productivity shocks include neutral
and investment-specific productivity shocks. The demand shocks include the risk premium, government
spending, and monetary policy shocks. The markup shocks include price and wage markup shocks. Finally,
the energy shocks include energy demand and supply shocks. HKL denotes our benchmark model with the
translog production function, HKL-CD refers to the Cobb-Douglas specification with energy (βel = 0), and
Smets and Wouters (2007) features the Cobb-Douglas production function without energy (βel = 0, βe = 0).
We use the posterior mode of each model for calculating the FEVDs.

and S&W.25

To investigate the mechanism behind the decreasing role of markup shocks, we show the impulse

responses of output conditional on markup shocks for all three models. The top (bottom) panels in

Figure 2 illustrate the responses to a one-standard-deviation contractionary price (wage) markup

shock, and the solid, dash-dotted, and dashed lines represent the results based on our benchmark

model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters

(2007) model (S&W), respectively. We do the following to understand the importance of using

25Although we extend the dataset constructed by Smets and Wouters (2007) to later periods, using the same sample
periods as in Smets and Wouters (2007) yields a similarly depressed role of price markup shocks in HKL than the other
two models. Also, in all three models, the demand shocks are estimated to be more important under the extended
sample than the sample used by Smets and Wouters (2007), ending in 2004:q4. For example, the demand shocks
explain 9% of output forecast error variances at the 8-year horizon (instead of 20% in Table 7) at the posterior mode
in Smets and Wouters (2007). The corresponding shares for labor is 17% (instead of 38% in Table 7). It is probably
because our extended sample includes the Great Recession periods when the demand shocks are known to be important
(Mian et al. 2013; Mian and Sufi 2014; Benguria and Taylor 2020).
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Figure 2: Impulse responses of output to price and wage markup shocks

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 4 8 12 16 20

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

HKL HKL-CD S&W

Notes. The two panels in Column (a) show the responses of output to a one-standard-deviation contractionary price
and wage markup shock, respectively. The solid, dash-dotted, and dashed lines represent the results based on our
benchmark model (HKL), the model without input complementarity (HKL-CD), and the Smets and Wouters (2007)
model (S&W), respectively. We use the posterior mode of each model. For Column (b), we replace the Calvo sticky
price and wage parameters of HKL-CD and S&W with the corresponding HKL parameters. Column (c) is based on
the estimated price and wage markup shock processes of HKL in Table 3. Finally, Column (d) uses Calvo and markup
shock parameters at the HKL posterior mode.

different parameters separately estimated for each model. In Column (a), we use each model’s

posterior mode, consistent with Table 7. In Columns (b)-(d), we fix two sets of parameters—which

are notably different—across the models: (i) Calvo price and wage stickiness and (ii) persistence

of markup shocks. Then we compare the impulse responses across the models to understand which

parameters are responsible for the depressed role of markup shocks. For all three models, Column (b)

uses the Calvo parameters in the benchmark model, Column (c) uses the markup shock parameters

in the benchmark model, and Column (d) uses both the Calvo and markup shock parameters in the

benchmark model.

Column (a) confirms the results in Table 7. The markup shocks have substantially smaller

effects on output in our benchmark model than in the other models. The peak effects of a one-

standard-deviation price markup shock on output are 0.40% (HKL), 0.53% (HKL-CD), and 0.52%

(S&W) in absolute value. Similarly, for wage markup shocks, the peak effects are 0.39% (HKL),

0.46% (HKL-CD), and 0.47% (S&W). The smaller effects of both price and wage markup shocks with

the translog production function are similar for investment, consumption, and labor (see Appendix
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D.6).

Columns (b)-(d) show that markup shocks are less important in our benchmark model mainly

because of less persistent markup shock processes. As shown in Column (b), fixing the price and wage

rigidity across the three models makes the impulse response generated from HKL-CD and Smets and

Wouters (2007) deviate even more from that of our benchmark model. This result emphasizes that

stickier prices and wages in HKL do not decrease the importance of markup shocks as a source of

business cycles. In contrast, the impulse responses of output are nearly identical across the models

when we use the same markup shock parameters, as shown in Column (c). Thus, markup shock

processes—estimated to be less persistent in HKL— are essential for the smaller contribution of

markup shocks to output fluctuations. Column (d) fixes both Calvo and markup shock parameters,

and the impulse responses are analogous to those in Column (a). Appendix D.7 separately tests

whether the positive input complementarity parameter (βel > 0) per se can solely depress the roles

of markup shocks by fixing all the other parameters. We do not find supporting evidence for this

conjecture.

As discussed in Section 3.2, the estimated parameters change because procyclical returns to scale

lead to less persistent markup shocks with smaller impetus through the flatter price and wage Philips

curves. Equation (3.12) shows that our benchmark model features novel procyclical elements in price

markups or countercyclical components in real marginal costs because of the input complementarity.

The resulting variations in the marginal costs per se do not amplify the dynamics of aggregate

variables, especially given other parameters. However, it makes our Bayesian estimator select stickier

prices and less responsive price inflation to the real marginal costs to match the empirical correlation

of inflation and GDP. Correspondingly, nominal wages become stickier to match the real wage

cyclicality in the data. Then, the stronger nominal rigidities, in turn, render real variables to respond

more to structural shocks, as shown in Column (b) of Figure 2, absorbing previously unexplained

variations that were attributed to price and markup shocks.

The decreasing roles of markup shocks are also critical to understand the price markup cyclicality.

Table 8 revisits the price markup cyclicality in Table 5 by decomposing the unconditional covariance

between GDP and price markups into the conditional covariances on each structural shock.26 Panel

A shows the unconditional cyclicality (correlation and covariance with GDP), and Panels B and C

decompose this cyclicality into the contribution of nine structural shocks and four broad types of

shocks, respectively. Columns (1), (2), and (4) use the posterior modes of each model, as in Table 7

and Column (a) of Figure 2. To isolate the role of the input complementarity (βel > 0) from the other

26Because structural shocks are mutually orthogonal, cov
(
ŷGDP
t , Φ̂t

)
= cov

(∑
j ψ

GDP
j (L) εjt ,

∑
j ψ

Φ
j (L) ε

j
t

)
=∑

j cov
(
ψGDP

j (L) εjt , ψ
Φ
j (L) ε

j
t

)
, where ψGDP

j (L) and ψΦ
j (L) represent the impulse response function of ŷGDP and Φ̂

to shock εj . Thus, the unconditional covariance cov
(
ŷGDP
t , Φ̂t

)
can be decomposed into the conditional covariances

on each structural shock.
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Table 8: Covariance decomposition of the price markup cyclicality

(1) (2) (3) (4) (5) (6)

S&W HKL-CD HKL w/
βel = 0

HKL (3)-(2)
(%)

(4)-(3)
(%)

Panel A: Unconditional moments

Correlation coefficient -0.27 -0.26 -0.09 -0.05 - -

Covariance -5.44 -6.06 -1.75 -1.20 100 100

Panel B: Conditional moments I

Productivity (neutral) 1.47 1.44 1.92 1.86 11.19 -11.95

Risk premium -1.68 -1.98 -2.40 -2.24 -9.85 28.66

Government spending -0.12 -0.14 -0.14 -0.12 -0.05 3.41

Investment-specific productivity -1.17 -0.99 -0.67 -0.60 7.45 11.77

Monetary policy -0.60 -0.62 -0.75 -0.69 -2.95 10.52

Price markup -5.27 -5.90 -2.32 -2.28 82.91 6.19

Wage markup 1.93 2.09 2.57 2.63 11.00 11.20

Energy demand - 0.01 0.02 0.12 0.14 19.14

Energy supply - 0.01 0.02 0.13 0.17 21.04

Panel C: Conditional moments II

Productivity shocks 0.30 0.45 1.26 1.26 18.63 -0.18

Demand shocks -2.40 -2.74 -3.29 -3.06 -12.84 42.60

Markup shocks -3.34 -3.80 0.25 0.34 93.91 17.39

Energy shocks - 0.02 0.04 0.26 0.30 40.19

Notes: Panel A shows the unconditional correlation coefficients and covariances of GDP and price markups.
Panel B decomposes the unconditional covariance into the contributions of nine structural shocks. Panel C
summarizes the conditional cyclicality of different types of shocks. The productivity shocks include neutral and
investment-specific productivity shocks. The demand shocks include the risk premium, government spending,
and monetary policy shocks. The markup shocks include the price and wage markup shocks. Finally, the energy
shocks include the energy demand and supply shocks. Column (1) regards the Smets and Wouters (2007) model,
featuring the Cobb-Douglas production function without energy (βel = 0, βe = 0). HKL-CD in Column (2) refers
to the Cobb-Douglas specification with energy (βel = 0). The results based on our benchmark model (HKL)
with the translog production function are depicted in Column (4). Column (3) is based on the HKL posterior
mode without the input complementarity (βel = 0). Column (5) compares Columns (2) and (3) to focus on the
contribution of the changes in the parameter estimates due to the introduction of βel. Column (6) emphasizes
the role of βel given the other parameters fixed by comparing Columns (3) and (4).

parameter changes in the estimates, in Column (3), we use the parameters at the HKL posterior

mode except for the input complementarity parameter, which is assumed to be zero (βel = 0). To

make this comparison explicit, Columns (5) and (6) report the percentage change from Columns (2)

to (3) and from Columns (3) to (4), respectively.

As shown in Panel A, unconditional price markups are more procyclical in HKL (Column (4))

than in the Cobb-Douglas models (Columns (1) and (2)), replicating the markup cyclicality results
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in Table 5. From the comparison across Columns (2)-(4), we show that the input complementarity

affects the markup cyclicality both by altering the other parameters at the posterior mode (from

Columns (2) to (3)) and by changing the propagation of structural shocks (from Columns (3) to (4)).

The further decomposition into the conditional covariances in Panels B and C emphasizes two

notable changes regarding more procyclical price markups in HKL than in HKL-CD and S&W:

the decreasing role of price markup shocks and the changes in the conditional cyclicality. First,

as shown in Column (5) of Panel B, the most significant increase in the unconditional covariance

due to the new parameter estimates originates from the changes in the conditional covariances on

price markup shocks, amounting to 82.91%. This change arises mainly because the size of markup

shocks shrinks significantly, rendering price markups substantially less countercyclical.27 Second,

as shown in Column (6) of Panel C, the input complementarity induces more procyclical price

markups conditional on demand and energy shocks in HKL than in the other models. As the input

complementarity between labor and energy raises the returns to scale and lowers the marginal cost

of production during demand- and energy-based expansions, price markups increase more in HKL

than in the models with Cobb-Douglas specifications.

4 Conclusion

This paper studies business cycles with a translog production function. Our empirical analyses suggest

that there is complementarity between labor and energy, leading to procyclical returns to scale. Our

empirical evidence is not compatible with the commonly used, tightly parameterized production

functions. Thus, we introduce the normalized translog production function into a standard medium-

scale DSGE model and re-estimate the input substitution parameters within the structure of our

model. Our model rationalizes procyclical returns to scale, acyclical price markups, countercyclical

labor shares, procyclical energy shares, and procyclical profit shares. Furthermore, we document that

the contribution of price and wage markup shocks to output fluctuations in our model is substantially

smaller than that in the Smets and Wouters (2007) model. The complementarity between labor and

energy and the corresponding procyclical returns to scale are central to the theoretical mechanism

behind the results.

Our work underscores the need to employ general forms of production functions in business

cycle research. Further efforts to utilize a general functional form will extend the understanding of

business cycles.

27Note that sticker prices make the price markup more countercyclical, given the same-sized price markup shocks.
However, this effect is weaker than the depressed price markup shock channel, yielding less countercyclical price
markups conditional on price markup shocks. On the other hand, for wage markup shocks, the sticker price channel is
stronger than the depressed wage markup shock channel, making price markups more procyclical conditional on wage
markup shocks.
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